#### COM-406

# Information theory and signal processing

Gastpar Michael, Telatar Emre, Urbanke Rüdiger

| Cursus                                | Sem.     | Туре | Language of teaching                                  | English<br>6<br>Winter<br>Fall<br>Written<br>180h<br>14 |
|---------------------------------------|----------|------|-------------------------------------------------------|---------------------------------------------------------|
| Computational science and Engineering | MA1, MA3 | Opt. |                                                       |                                                         |
| Computer and Communication Sciences   |          | Obl. | Credits                                               |                                                         |
| Cybersecurity                         | MA1, MA3 | Opt. | Semester<br>Exam<br>Workload<br>Weeks<br><b>Hours</b> |                                                         |
| Data Science                          | MA1, MA3 | Obl. |                                                       |                                                         |
| Data science minor                    | Н        | Opt. |                                                       |                                                         |
| Digital Humanities                    | MA1, MA3 | Opt. |                                                       | 6 weekly                                                |
|                                       |          |      | Courses                                               | 4 weekly                                                |
|                                       |          |      | Exercises                                             | 2 weekiy                                                |

# Summary

Information Theory and Signal Processing are key underpinnings of Data Science. They provide frameworks for signal representation and for fundamental performance bounds.

#### Content

This class presents basic concepts of Information Theory and Signal Processing and their relevance to emerging problems in Data Science and Machine Learning.

A tentative list of topics covered is:

- 1. Signal Representations
- 2. Measures of Information
- 3. Compression and Quantization
- 4. Sparsity
- 5. Exponential Families, Maximum Entropy
- 6. Detection and Estimation Theory

#### Keywords

Information Theory, Signal Processing, Statistical Signal Processing, Machine Learning, Data Science.

#### Learning Prerequisites

Required courses COM-300 Modèles stochastiques pour les communications

Recommended courses Statistics

**Important concepts to start the course** Solid understanding of linear algebra and probability as well as real and complex analysis.

## Learning Outcomes

By the end of the course, the student must be able to:

- Formulate the fundamental concepts of signal processing such as basis representations and sampling
- Formulate the fundamental concepts of information theory such as entropy and mutual information
- Analyze problems in statistical settings using fundamental bounds from information theory



Number of positions

• Formulate problems using robust and universal techniques

## **Teaching methods**

Ex cathedra lectures, exercises, and small projects.

## **Expected student activities**

Follow lectures; independent work on problems (homework and small projects).

## Assessment methods

Written final exam during the exam session. Homework Problem Sets during the semester. 10% homework, 90% final exam.

Yes

Supervision

Assistants

Resources Bibliography Cover and Thomas, Elements of Information Theory (Second Edition), Wiley, 2006.

## Ressources en bibliothèque

• Elements of Information Theory / Cover

Notes/Handbook Lectures notes

Websites

• https://ipg.epfl.ch/cms/lang/en/pid/147664