MSE-468 Atomistic and quantum simulations of materials

Marzari Nicola				
Cursus	Sem.	Туре	Language of	English
Computational science and Engineering	MA2, MA4	Opt.	teaching	Linglish
Materials Science and Engineering	MA2, MA4	Opt.	Credits Session	4 Summer
			Semester Exam Workload Weeks Hours Courses TP Number of positions	Spring During the semester 120h 14 4 weekly 3 weekly 1 weekly

Summary

Theory and application of quantum simulations to model, understand, and predict the properties of real materials.

Content

Materials simulations: classical and quantum models. Electronic-structure and first-principles approaches (density-functional theory and the total-energy pseudopotential method). Temperature and thermodynamic averages: Monte Carlo sampling and molecular dynamics simulations. How to obtain materials' properties from simulations. Computational laboratories: Mechanical properties of materials. Band structures and electrical transport. Molecular dynamics and diffusion coefficients. Phonons and vibrational spectroscopies.

Learning Prerequisites

Recommended courses

Fundamentals of solid-state materials, or similar.

Learning Outcomes

By the end of the course, the student must be able to:

• Model materials with quantum mechanical simulations

Teaching methods Ex cathedra and computational laboratories

Assessment methods Written reports of computational labs

