EE-559	Deep learning				
	Fleuret François				
Cursus Computational science and Engineering Computer science Cybersecurity Data Science		Sem.	Туре	Language of	English 4 Summer Spring Written 120h 14 4 weekly 2 weekly 2 weekly 342
		MA2, MA4	MA2, MA4Opt.Language of teachingMA2, MA4Opt.CreditsMA2, MA4Opt.SemesterMA2, MA4Opt.Exam	teaching	
		MA2, MA4		Credits	
		MA2, MA4		Semester	
		MA2, MA4		Exam	
Digital Humanities		MA2, MA4	Opt.	Weeks	
Electrical Engineering			Obl.	Hours	
Electrical and Electronical Engineering		MA2, MA4	Opt.	Courses	
Life Sciences Engineering		MA2, MA4	MA4 Opt. Number of	Number of	
Robotics		MA2, MA4	Opt.	positions	
SC master EPFL		MA2, MA4	Opt.		

Summary

The objective of this course is to provide a complete introduction to deep machine learning. How to design a neural network, how to train it, and what are the modern techniques that specifically handle very large networks.

Content

The course aims at teaching the required skills to use deep learning methods on applied problems. It will show how to design and train a deep neural network for a given task, and the sufficient theoretical basis to go beyond the topics directly seen in the course.

The planned content of the course:

- What is deep learning, introduction to tensors.
- Basic machine-learning, empirical risk minimization, simple embeddings.
- Linear separability, multi-layer perceptrons, back-prop.
- Generalized networks, autograd, batch processing, convolutional networks.
- Initialization, optimization, and regularization. Drop-out, activation normalization, skip connections.
- Deep models for Computer Vision.
- Analysis of deep models.
- Auto-encoders, embeddings, and generative models.
- Recurrent models and Natural Language Processing.
- pytorch tensors, deep learning modules, and internals.

Concepts will be illustrated with examples in the pytorch framework (http://pytorch.org).

Keywords

machine learning, neural networks, deep learning, computer vision, python, pytorch

Learning Prerequisites

Required courses

- Linear algebra (vector, matrix operations, Euclidean spaces).
- Differential calculus (Jacobian, Hessian, chain rule).
- Python programming.

- Basics in probabilities and statistics (discrete and continuous distributions, normal density, law of large numbers, conditional probabilities, Bayes, PCA)

Recommended courses

- Basics in optimization (notion of minima, gradient descent).
- Basics in algorithmic (computational costs).
- Basics in signal processing (Fourier transform, wavelets).

Teaching methods

Ex-cathedra with exercise sessions and mini-projects. Invited speakers from the industry will present how deep learning is used in practice for their applications.

Assessment methods

Two mini-projects by groups of three students, and one final written exam.

Resources Notes/Handbook Not mandatory: http://www.deeplearningbook.org/