MATH-454

Parallel and high-performance computing

Richart Nicolas				
Cursus	Sem.	Туре	Language of	English
Computational science and Engineering	MA2, MA4	Opt.	teaching	Ligist
			Credits	4
			Session	Summer
			Semester	Spring
			Exam	Oral
			Workload	120h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	1 weekly
			TP	1 weekly
			Number of	
			positions	

Summary

This course provides insight into a broad variety of High Performance Computing (HPC) concepts and the majority of modern HPC architectures. Moreover, the student will learn to have a feeling about what architectures are suited for several types of algorithms.

Content

HPC overview:

- Today's HPC: Beowulf-style clusters, massively parallel architectures, hybrid computing, accelerators
- HPC history and background
- HPC benchmarks explained
- Multicore systems
- Scaling

Writing HPC code:

- Shared memory parallelism with OpenMP
- Distributed memory parallelism with MPI
- Hybrid programming with OpenMP and MPI
- GPGPU primer
- Profiling

Keywords HPC, Parallelization, MPI, GPU

Learning Prerequisites

Required courses

- Analysis, bachelor level
- Numerical analysis for engineers
- Matrix algebra
- Programming concepts in scientific computing

Learning Outcomes

By the end of the course, the student must be able to:

- Classify the types of HPC architecture
- Identify codes suited for parallelizing
- Apply the most commont parallelization techniques
- Implement algorithms in parallel
- Investigate the performances of parallel code
- Argue about the differences in performances between theory and practice
- Optimize the usage of hardware and software resources depending on the type of algorithm to parallelize

Transversal skills

- Set objectives and design an action plan to reach those objectives.
- Communicate effectively with professionals from other disciplines.
- Access and evaluate appropriate sources of information.
- Write a scientific or technical report.

Teaching methods

Lectures, exercises, project work

Expected student activities

Attendance at lectures, completing exercises, writing a project

Assessment methods

Oral defense of project work

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes