

BIOENG-442 Biomaterials

Sem.	Type	
		L
MA2, MA4	Opt.	te: Cr Se Se Ex W
E	Opt.	
MA2, MA4	Opt.	
MA2, MA4	Opt.	
E	Opt.	
MA2, MA4	Opt.	ŀ
	MA2, MA4 MA2, MA4 E	E Opt. MA2, MA4 Opt. MA2, MA4 Opt. E Opt.

Ghezzi Diego Lütolf Matthias

Language of teaching	English
Credits	4
Session	Summer
Semester	Spring
Exam	Written
Workload	120h
Weeks	14
Hours	4 weekly
Courses	2 weekly
Exercises	2 weekly
Number of positions	

Summary

This course covers the fundamental concepts behind the design, function and application of state-of-the-art biomaterials, that is, materials that are designed based on a molecular understanding of their interactions with biological systems.

Content

Part I: Biological fundamentals

- · Cells, extracellular matrices and tissues
- Proteins and protein adsorption, immunological aspects of biomaterials
- · Stem cells and tissue regeneration
- Angiogenesis

Part II: Biomaterials classes

- Biomaterials for devices, structural and chemically degradable biomaterials
- · Micro- and nanoparticles
- Extracellular matrix-mimicking biomaterials
- · Hydrogels as biomaterials
- · Self-assembly and supramolecular biomaterials
- Biomaterials for gene delivery and vaccination

Part III: Emerging design and applications of biomaterials

- · Tailoring materials for stem cell biology
- · Biomaterials for tissue engineering
- Biomaterials for modulation of the immune system
- · Biomaterials for neuroengineering
- · Biomaterials in medical devices

Keywords

Cells, extracellular matrix, tissue, regeneration, angiogenesis, biodegradable materials, hydrogels, drug delivery, microand nano-particles, self-assembly, high-throughput screening, stem cell engineering, materials for immunemodulation

Learning Prerequisites

Biomaterials Page 1 / 3

Recommended courses

Materials science for bioengineers (BIOENG-315) Biology I (BIO-103) Stem cell biology and technology (BIO-447)

Learning Outcomes

By the end of the course, the student must be able to:

- Elaborate key effectors and their functions driving protein- and cell-materials interactions
- Formulate the basics of inflammation induced by materials in the body
- Elaborate the basics of stem cell function and tissue regeneration, and how materials can influence regeneration
- Systematize the different general applications of biomaterials
- Contextualise specific examples of biomaterials on the basis of application and understands their selection criteria
- Judge the suitability of a material for a certain application based on structure-property relationships
- Formalize the key concepts in the molecular engineering of bioactivity and bioresponsiveness

Transversal skills

- · Assess one's own level of skill acquisition, and plan their on-going learning goals.
- · Make an oral presentation.
- Demonstrate a capacity for creativity.
- Continue to work through difficulties or initial failure to find optimal solutions.
- Evaluate one's own performance in the team, receive and respond appropriately to feedback.
- Communicate effectively, being understood, including across different languages and cultures.
- Use a work methodology appropriate to the task.
- Set objectives and design an action plan to reach those objectives.
- Plan and carry out activities in a way which makes optimal use of available time and other resources.

Teaching methods

- Ex cathedra
- · Group case study

Expected student activities

- Reading key literature before each course as preparation
- Group case study

Assessment methods

Group project: 25% Written exam: 75%

Supervision

Office hours Yes
Assistants Yes
Forum Yes

Resources

Biomaterials Page 2 / 3

Bibliography

Comprehensive Biomaterials, 1st edition, Paul Ducheyene et al., Elsevier (2011) Principles of Tissue Engineering, Editors Lanza, Langer & Vacanti, Elsevier (2007)

Ressources en bibliothèque

- Principles of tissue engineering / Lanza
- Comprehensive Biomaterials / Ducheyne

Notes/Handbook

Will be provided on moodle webpage before each lecture

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=681

Biomaterials Page 3 / 3