MATH-434	Lattice	models

Hongler Cl	ément			
Cursus	Sem.	Туре	l anguage of	English
Ingmath	MA1, MA3	Opt.	teaching	Linglish
Mathématicien	MA1, MA3	Opt.	Credits Session	5 Winter
			Semester	Fall
			Exam	Written
			Workload	150h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly

Summary

Lattice models consist of (typically random) objects living on a periodic graph. We will study some models that are mathematically interesting and representative of physical phenomena seen in the real world.

Content

We will discuss some classical lattice models, such as: random walks, percolation, Ising model, random spanning trees, gaussian free field.

We will prove non-trivial theorems for each of the models. The goal is to allow students to learn general methods and concepts from a number of detailed case studies.

Keywords

probability, graph theory, complex analysis, lattice models, statistical mechanics

Learning Prerequisites

Required courses

Basic probability, basic analysis, linear algebra

I think that students who like to learn in the definition/theorem/proof/lemma way might be disappointed. While the class will be completely rigorous, the emphasis is more on revealing some interesting phenomena (that somehow exists in nature) rather than on constructing some theories. The goal is to learn things that are generalizable, but I almost always prefer to work out particular cases first.

Recommended courses

None of this is mandatory, but it could help: complex analysis, basic graph theory, simulations

Learning Outcomes

- Reason with probabilistic lattice models
- Manipulate random variables in geometric settings
- Manipulate discrete and continuous objects

Assessment methods

Written exam

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

2 weekly

Exercises Number of positions

Lattice models

2019-2020 COURSE BOOKLET