

FIN-407 Financial econometrics

Monfort Alain

Cursus	Sem.	Type
Financial engineering minor	Е	Opt.
Financial engineering	MA2, MA4	Obl.

Language of teaching	English
Credits	6
Session	Summer
Semester	Spring
Exam	Written
Workload	180h
Weeks	14
Hours	5 weekly
Courses	3 weekly
Exercises	2 weekly
Number of positions	

Summary

The objective of this course is to present the main tools of financial econometrics and to show their relevance for prediction ,causality ,shock propagation , signal extraction , risk measure and asset pricing .

Content

- 1-STOCHASTIC PROCESSES: Moments, Stationarity, Autocorrelation and Partial autocorrelation functions, Estimation of autocorrelation and partial autocorrelation functions
- 2-ARMA, ARIMA MODELS: Lag operator, Autoregressive processes, Moving average processes, ARMA processes, ARIMA processes
- 3-PREDICTION WITH ARIMA MODELS: General principles of prediction, Prediction in ARIMA models, Prediction function and pivotal values, Prediction intervals
- 4-INFERENCE IN ARMA MODELS: Estimation, Tests and confidence regions, Validation, Model selection
- $\hbox{5-EXOGENEITY AND CAUSALITY: Definition based on probability distributions, Causality measures, Causality tests}\,,$
- 6-VECTOR AUTOREGRSSIVE (VAR) MODELS AND RESPONSE FUNCTIONS; Multivariate processes, Definition of a VAR, Estimation and tests in a VAR, Causality, Shock propagation, Impulse response function, Variacne decomposition, Structural shocks, Examples
- 7-STYLISED FACTS IN FINANCIAL TIME SERIES: Fat tails, Volatility clustering, Asymmetric response to shocks, Correlation of powers, Persistence, Co-volatility
- 8-UNIVARIATE ARCH-GARCH MODELS: Motivations, Different kinds of white noises, Definitions of ARCH and GARCH models, Stationarity, Coherence with stylized facts
- 9-GENERALIZATIONS OF UNIVARIATE GARCH MODELS: Regression models with GARCH errors, ARMA-GARCH models, GARCH-M models, Asymmetric response models,
- 10-INFERENCE IN GARCH TYPE MODELS: Inference under conditional normality, Inference under conditional Student assumption, Semi-parametric approach, Examples
- 11-MULTIVARIATE GARCH MODELS: Constant Conditional Correlation (CCC) models ,Dynamic Conditional Correlation (DCC) models ,Asymmetric Volatilty , Examples
- 12-KALMAN FILTER AND EXTENSIONS: Definition of a linear factor model, Kalman filter, Kalman smoother, Estimation and tests, Extended Kalman Filter of order 1, Extended Kalman Filter of order 2, Quadratic Kalman Filter
- 13-APPLICATIONS OF THE KALMAN FILTER: Value at Risk modeling, Multivariate Factor GARCH models, Stochastic volatility models.
- 14-HIDDEN MARKOV CHAINS: Markov chains, Switching regime models, Kitagawa-Hamilton algorithm, EM algorithm, Coding, Parameterization of the transition matrix, Application to stochastic volatility models.
- 15-DISCRETE TIME AFFINE PROCESSES

Laplace Transform, Affine processes, Examples, Multi-Horizon Laplace Transform, Application to asset pricing.

Keywords

Econometrics, Finance

Financial econometrics Page 1/3

Learning Prerequisites

Required courses

Econometrics

Recommended courses

Introduction to finance

Important concepts to start the course

Basic linear algebra.

Basic probalilistic and statistical concepts.

Learning Outcomes

By the end of the course, the student must be able to:

- Elaborate a prediction program
- Assess / Evaluate existing estimation and predicition methods
- Formulate new estimation and prediction methods
- Propose risk measures
- Optimize signal extraction techniques
- Construct econometric pricing models
- Implement ARMA, GARCH, Stochastic Volatilty models
- Exploit signal extraction algorithms (Kalman and Kitagawa-Hamilton filters)

Transversal skills

- Give feedback (critique) in an appropriate fashion.
- Demonstrate the capacity for critical thinking
- Use a work methodology appropriate to the task.

Teaching methods

Lectures and exercise sessions

Expected student activities

- Participate in lectures
- Participate in exercises sessions
- · Solve the problem sets
- Write a midterm exam
- Write a final exam

Assessment methods

100% Final exam

Supervision

Financial econometrics Page 2 / 3

Office hours Yes
Assistants Yes
Forum No

Resources

Bibliography

Hamilton, J.D.(1994): "Time Series Analysis", Princeton Univertsity Press

Gourieroux C. and Monfort A.(1996): "Time Series and Dynamic Models", Cambridge University Press Frank C. and Zakoian J.M.(2010): "Garch Model"s, Wiley

Gourieroux C. and Monfort A,(1996): "Statistics and Econometric Models" ,(2 vol.),Cambridge University Press

Bertholon H., Monfort A. and Pegoraro F. (2008): "Econometric Asset Pricing Modelling", Journal of Financial Econometrics ,4,407-458 Gourieroux C.

Ressources en bibliothèque

- Times Series Analysis / Hamilton
- Time Series and Dynamic Models / Gourieroux
- Econometric Asset Pricing Modelling / Bertholon
- GARCH Models / Francq
- Statistics and Econometric Model / Gourieroux

Prerequisite for

Courses using statistical dynamic models

Financial econometrics Page 3 / 3