

Wagnières Georges

Maginoroo Ocorgoo				
Cursus	Sem.	Туре	Language of	English
Bioengineering	MA1, MA3	Opt.	teaching	Ligisti
Life Sciences Engineering	MA1, MA3	Opt.	Credits	3
Microtechnics	MA1, MA3	Opt.	Session Semester	Winter Fall
Photonics minor	Н	Opt.	Exam	Oral
			Workload	90h
			Weeks	14

Hours

Courses Exercises

Number of positions

Summary

This course addresses the principles governing the interactions between light and biological tissue, their optical properties and basic concepts of radiometry. Illustrative diagnostic and therapeutic applications of light in medicine and photobiology will also be described.

Content

Introduction

Brief history Introduction to general optics and tissue optics Radiometry and Photometry Light dosimetry Light-tissues interactions Introduction to molecular spectroscopy Photosensitizers

Principles and techniques

Absorption, fluorescence and vibrational spectroscopies and imaging.

Time-resolved spectroscopy and imaging.

Light sources, detectors and optical systems.

Applications

Analytical techniques, oxymetry, optical biosensors, Photodetection of early cancers with exogenous and endogenous dyes, Angiography, Phototherapy and Photodynamic therapy, optical coherence tomography.

Keywords

Biomedical photonics, tissue optics, light-tissue interactions, photodiagnosis, phototherapy, light dosimetry, dyes, photosensitizers.

Learning Prerequisites

Important concepts to start the course Basic background in biology, chemistry and optics.

Learning Outcomes

By the end of the course, the student must be able to:

- Design simple systems used for phototherapy and photodiagnosis.
- Characterize the spectral design of apparatus used in biomedical optics.
- · Compute the light dose in biological tissues.

3 weekly 2 weekly

1 weekly

- Identify the optical components to develop an apparatus used in phototherapy.
- Explain the working principles of apparatus used in biomedical optics.
- Model the propagation of light in biological tissues.
- Quantify the light dose in phototherapy.
- Interpret data obtained or published in photomedicine.

Transversal skills

- Access and evaluate appropriate sources of information.
- Collect data.
- Make an oral presentation.
- Summarize an article or a technical report.
- Communicate effectively with professionals from other disciplines.

Teaching methods

Lectures, Exercises, recent literature review papers, classroom discussion + oral presentation.

Expected student activities

Exercises, lecture of review papers, classroom discussion + oral presentation.

Assessment methods

Oral exam (1/2) + presentation (1/4) + exercices (1/4).

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Bibliography

- Optical-Thermal Response of Laser Irradiated Tissue, A.J. Welch & M.J.C. van Gemert (Plenum, 1995).
- Principles of Fluorescence Spectroscopy, J.R. Lakowicz (Kluwer, 1999).
- Optics, E. Hecht (Addison Wesley, 2000).
- Handbook of Photomedicine, M. Hamblin & Y.-Y. Huang (CRC Press, 2013).
- Handbook of Biomedical Fluorescence, M.-A. Mycek & B. W. Pogue (Dekker, 2003).
- Photosensitisers in Biomedicine, M. Wainwright (Wiley-Blackwell, 2009).
- Quantitative Biomedical Optics, I. Bigio & S. Fantini (Cambridge Univ. Press, 2016)

Ressources en bibliothèque

- Optics / Hecht
- Optics / Hecht
- Optical-Thermal Response of Laser Irradiated Tissue / Welch
- Photosensitisers in Biomedicine / Wainwright
- Principles of Fluorescence Spectroscopy / Lakowicz
- Handbook of Photomedicine / Hamblin
- Quantitative Biomedical Optics / Bigio
- Handbook of Biomedical Fluorescence / Mycek
- Optics / Hecht

Notes/Handbook

Slides available on Moodle.

Prerequisite for

Master. Academic research and R/D activities in the industry of this field