

# ENV-542 Advanced satellite positioning

Botteron Cyril, Skaloud Jan

| Cursus                                 | Sem.     | Туре |
|----------------------------------------|----------|------|
| Environmental Sciences and Engineering | MA2, MA4 | Opt. |
| Microtechnics                          | MA2, MA4 | Opt. |
| Robotics                               | MA2, MA4 | Opt. |
| Space technologies minor               | E        | Opt. |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 4        |
| Session              | Summer   |
| Semester             | Spring   |
| Exam                 | Written  |
| Workload             | 120h     |
| Weeks                | 14       |
| Hours                | 4 weekly |
| Courses              | 2 weekly |
| Exercises            | 1 weekly |
| TP                   | 1 weekly |
| Number of positions  |          |

## **Summary**

All fundamental principles behind modern satellite positioning to acquire, track and evaluate direct and indirect satellite signals and process them in relation to example applications: Earth monitoring (landslides,...), high precision positioning (automated driving, robots,...) and time transfer.

#### Content

#### Concept of satellite positioning

- basic principals & reference frames
- orbit computation & simple positioning

#### Signal modulation and structure

- RF propagation in space
- signal structure including new Galileo modulations

### Receiver technology

- signal preprocessing
- signal acquisition & tracking

### Error models and differencing concepts for special and high precision applications

- code and carrier phase measurements
- linear combination of observations

### Algorithms for reliable positioning

- code and carrier-phase smoothed-code
- carrier-phase cycle ambiguity determination

#### Algorithms for environmental sensing

- water vapor estimation
- total electron content estimation
- GNSS reflectometry

#### Keywords

GNSS, GPS, GLONASS, Galileo, satellite, positioning, signal modulation, detection, estimation, signal processing, ionosphere, troposphere, automated vehicles, space, time-transfer, Earth sensing, drones.

## **Learning Prerequisites**

## **Recommended courses**



Fundamentals of satellite positioning, signals and systems, or signal processing, estimation methods

#### Important concepts to start the course

Linear algebra, basic signal processing, statistics, programmation in Matlab

#### **Learning Outcomes**

By the end of the course, the student must be able to:

- · Implement signal acquisition and tracking
- Develop estimation procedure for precise positioning
- Interpret and analyse error sources as signal of environment
- Apply orbit calculation and algorithms for absolute positioning
- Synthesize a particular problem in GNSS for other students
- Solve carrier-phase ambiguities for cm-level positioning and ionosphere monitoring
- Choose an appropriate method and signals according to application

#### Transversal skills

- · Make an oral presentation.
- Summarize an article or a technical report.
- Use both general and domain specific IT resources and tools

#### **Teaching methods**

Ex cathedra, exercises (part in computer room), demonstrations

## **Expected student activities**

Active participation in the course and lab assignments, programming of algoritms and self-control (debugging), study of scientific papers.

#### **Assessment methods**

50% continuous control 50% written exam in August

## Supervision

Office hours No
Assistants Yes
Forum No

#### Resources

#### **Bibliography**

Recommended literature on Moodle.

#### Notes/Handbook

Slides, book chapter and scientific papers distributed via Moodle.

## **Moodle Link**

• http://moodle.epfl.ch/course/view.php?id=13837

#### Prerequisite for

Sensor orientation