

BIOENG-450 In silico neuroscience

Romani Armando, Schürmann Felix

Cursus	Sem.	Туре	Language of	English
Computational Neurosciences minor	E	Opt.	teaching	LIIGIISII
Life Sciences Engineering	MA2, MA4	Opt.	Credits	4 Summer
Neuroprosthetics minor	E	Opt.	Session Semester	Summer Spring
Sciences du vivant	MA2, MA4	Opt.	Exam	Written
			Workload	120h
			Weeks Hours	14 4 weekly
			Courses	2 weekly
			Exercises	2 weekly
			Number of positions	

Summary

"In silico Neuroscience" introduces students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies.

Content

"In silico Neuroscience" introduces masters students to a synthesis of modern neuroscience and state-of-the-art data management, modelling and computing technologies. Following fundamental structural and functional building blocks of the mammalian brain from cells to circuits, the course teaches applied biophysical modeling for each of these building blocks and showcases applications thereof in modern neuroscience. Accordingly, the course covers a number of key technologies, including 1) how neuroscience data is acquired, organized and integrated, 2) data-driven modeling and validation, 3) simulation and analysis technologies. The target audience are technically adept students in the EPFL Neuroscience program and students from other programs (e.g. I&C, SB, CSE) interested in applying their domain techniques to neuroscience.

Learning Prerequisites

Recommended courses

Neuroscience II Introduction to programming Projects in informatics

Important concepts to start the course general knowledge on cellular neuroscience experience in elementary programming (preferentially python)

Learning Outcomes

By the end of the course, the student must be able to:

- Interpret discrepancies between experimental findings
- Assess / Evaluate different level of detail formulations of models
- Integrate biological facts into detailed neuron and tissue models
- · Apply model concepts in simulations
- Exploit standard modelling and simulation software
- Analyze model predictions
- Explain formalisms and approaches in simulation software

Teaching methods

Classroom teaching & exercises group work

Assessment methods

Written exam (80%) Continuous control (20%)