BIO-463 Genomics and bioinformatics

Rougemont Jacques

Cursus	Sem.	Туре	Language of teaching Credits Session Semester	English 4 Summer Spring
Bioengineering	MA2, MA4	Opt.		
Life Sciences Engineering	MA2, MA4	Opt.		
Sciences du vivant	MA2, MA4	Opt.		
Systems Engineering minor	E	Opt.	Exam	During the semester
			Workload	120h

Weeks

Hours

Courses

Exercises Number of positions

Summary

This course reviews the different techniques of DNA sequence analysis and the associated bioinformatics tools in the context of applications to current research in molecular biology.

Content

- Genome sequencing and assembly
- Genome annotation, gene prediction
- Hidden Markov Models
- Comparative genomics
- Phylogenetic trees
- Models of molecular evolution
- Transcription
- Gene expression profiling
- Gene regulation
- Chromosome conformation

Learning Prerequisites

Recommended courses

Molecular biology, genetics, linear algebra, ordinary differential equations, basic statistics, computer programming

Important concepts to start the course DNA and RNA, replication, transcription and translation.

Teaching methods

2 hours lecture (theoretical concepts) followed by 2 hours practical exercises (review the theory and practice with bioinformatics tools and data)

Lecture notes, slides and exercises provided on Moodle.

Assessment methods

14

4 weekly

2 weekly 2 weekly The evaluation is based on a personal project. Students are required to analyze published genomics data and provide a written report of their analyses at the end of the semester.

Resources

Bibliography

- A primer of genome science / Greg Gibson, Spencer V. Muse
- Bioinformatics: sequence and genome analysis / David W. Mount
- Bioinformatics and functional genomics / Jonathan Pevsner
- Biological sequence analysis: probabilistic models of proteins and nucleic acids / Richard Durbin