MATH-261 Discrete optimization

Marcus Adam W.

Cursus	Sem.	Туре	Language of
Chemistry	BA6	Opt.	teaching
Electrical and Electronical Engineering	MA2, MA4	Opt.	Credits Session
Energy Science and Technology	MA2	Opt.	Semester
Mathematics	BA4	Opt.	Exam

Language of teaching	English	
Credits	5	
Session	Summer	
Semester	Spring	
Exam	Written	
Workload	150h	
Weeks	14	
Hours	4 weekly	
Courses	2 weekly	
Exercises	2 weekly	
Number of		
positions		

Summary

This course is an introduction to linear and discrete optimization. We will discuss linear programming and combinatorial optimization problems like bipartite matchings, shortest paths and flows. Warning: This course is for mathematicians! Strong emphasis is put on formal mathematical proofs.

Content

- Linear Programming
- Simplex Algorithm
- Cycling and termination of the simplex algorithm
- Algorithms and Running times
- Diameter of Polyhedra
- Duality Theory
- Graphs and shortest paths
- Max. weight bipartite matchings
- Maximum flows
- Integer Programming and relaxations

Keywords

Linear Programming Algorithms Complexity Graphs

Learning Prerequisites

Required courses Linear Algebra Discrete Mathematics or Discrete Structures

Important concepts to start the course The student needs to be able to prove theorems

Learning Outcomes

By the end of the course, the student must be able to:

- Choose appropriate method for solving basic discrete optimization problem
- Prove basic theorems in linear optimization
- Interpret computational results and relate to theory
- Implement basic algorithms in linear optmization
- Describe methods for solving linear optimization problems
- Create correctness and running time proofs of basic algorithms
- · Solve basic linear and discrete optimization problems

Transversal skills

- Continue to work through difficulties or initial failure to find optimal solutions.
- Use both general and domain specific IT resources and tools

Teaching methods

Ex cathedra lecture, exercises in the classroom and with a computer

Expected student activities

Attendance of lectures and exercises Completion of exercises Solving supplementary programs with the help of a computer

Assessment methods

Written exam during the exam session

Resources

Bibliography Dimitris Bertsimas and John N. Tsitsiklis: Introduction to Linear Optimization, Athena Scientific Alexander Schrijver: Theory of Linear and integer Programming, Wiley

Ressources en bibliothèque

- Introduction to Linear Optimization / Bertsimas
- Theory of Linear and Integer Programming / Schrijver

Notes/Handbook Lecture notes