1	Ξ	Ρ	۶	L

ChE-304 Energy system	ms engineering			
Luterbacher Jere	my, Smit Berend			
Cursus	Sem.	Туре	Language of	English
Chemical Engineering	BA6	Obl.	teaching	Linglish
Energy Science and Technology	MA2	Opt.	Credits	3
HES - CGC	E	Obl.	Session Semester	Summer Spring
			Exam	During the semester
			Workload	90h
			Weeks	14
			Hours	3 weekly
			Courses	2 weekly
			Exercises	1 weekly
			Number of positions	

Summary

This course will provide a toolkit to students to understand and analyze sustainable energy systems. In addition, the main sustainable energy technologies will be introduced and their governing principles explained.

Content

- 1. Basics of energy analysis
 - Technical aspects of energy: Thermodynamics of energy conversion
 - Systems modeling
- 2. Global energy analysis
 - Energy: issues, definitions and resources
 - Energy economics

3. Sustainable energy technologies (the technologies covered will vary year to year depending on guest lecturers)

- Energy Storage, management and distribution
- Fossil energy and carbon sequestration
- Geothermal energy
- Hydropower
- Wind energy
- Solar energy
- Biomass conversion and bioenergy

Learning Prerequisites

Required courses Thermodynamics, General Chemistry

Recommended courses Introduction to Chemical Engineering I and II

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze a renewable energy system
- Describe the working principles of the principle sustainable energy technologies
- Describe the main issues pertainaing to the global energy supply
- Analyze the thermodynamics of a sustainable enrgy system
- Perform a simple systems analysis of a renewable energy system
- Analyze the economics of a sustinable energy system

Teaching methods

Course with examples, case studies and exercises

Assessment methods

Continuous: one in-class exam and a project to be turned in.