EE-539 Electric filters

Dehollain Catherine				
Cursus	Sem.	Туре	Language of	English
Electrical and Electronical Engineering	MA1, MA3	Opt.	Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	3 Winter Fall Oral 90h 14 3 weekly 2 weekly 1 weekly

Summary

Introduction to approximation and synthesis methods for analog filters. Modern realization technologies are described including their limitations

Content

Analog circuits and systems (reminders) Definition of the analog filtering problem Theory of a non-dissipative 2-ports Analytic approximations Numerical approximations Phase shifters Circuit approximation Active filters Introduction to digital filtering Switched capacitor filters

Keywords

Passive electrical filters. Active electrical filters.

Learning Prerequisites

Required courses Nothing specific to mention except what is indicated in "Required courses (recommended)"

Recommended courses Electronics Circuits and Systems I and II

Important concepts to start the course Transfer function definition s-parameters definition Kirchoff laws

Learning Outcomes

By the end of the course, the student must be able to:

- Assess / Evaluate the transfer function of a filter
- Design an electrical filter
- Decide the order of the electrical filter
- Analyze a Tschebcheff transfer function
- Analyze a Butterworth transfer function
- Estimate the phase and modulus of the filter transfer function
- · Compose the transfer function of a low-pass, band-pass, low-pass filter
- Elaborate the topology of the electrical filter

Transversal skills

- Assess progress against the plan, and adapt the plan as appropriate.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Manage priorities.
- Use a work methodology appropriate to the task.
- Set objectives and design an action plan to reach those objectives.
- Communicate effectively, being understood, including across different languages and cultures.
- Use both general and domain specific IT resources and tools

Teaching methods

Ex-cathedra courses and exercises

Expected student activities

Attendance to lectures and exercises sessions

Assessment methods

Oral examination after the end of the semester

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Bibliography Electrical filter book by M. Hasler and J. Neirynck. Editor: Artech House.

Ressources en bibliothèque

• Electrical filter / Hasler

Notes/Handbook Electrical filter book by M. Hasler and J. Neirynck. Editor: Artech House.

Websites

• http://rfic.epfl.ch