

EE-445	Microwaves				
	Skrivervik Anja				
Cursus		Sem.	Туре	Language of	English
Electrical and Electronical Engineering		MA1, MA3	Opt.	teaching	Linglion
SC master EPFL		MA1, MA3	Opt.	Credits Session Semester	4 Winter Fall
				Exam	During the semester
				Workload Weeks	120h 14
					14

Summary

This course is n introduction to microwaves and microwave passive circuits. A special attention is given to the introduction of the notion of distributed circuits and to the scattering matrix

Content

Introduction: Definition of the basic notions, applications: radar, communications, satellites, space probes, microwave ovens, atomic clocks, biological effects

Microwave networks: S-parameters and scattering matrix

Microwave circuits: Description of devices with 1, 2, 3 and 4 ports. Ferrite devices: The gyromagnetic effect, isolators, circulators, switches, llimiters, component insertion, filters

Device and signal measurements: Basic principles, reflectometry, vector network analyzer, attenuation and phaseshift, TDR. Calibration for error compensation and deembedding. Measurement of frequency and power.

Keywords

microwaves, S-parameters, passive devices

Learning Prerequisites

Recommended courses Electromagnetics

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze Microwave circuits
- Create Microwave components
- Formalize S-parameter model

Transversal skills

• Use a work methodology appropriate to the task.

Teaching methods Ex cathedra with demonstrations and exercises

Assessment methods

With mandatory continuous control

Resources

Bibliography Handouts

Websites

• http://lema.epfl.ch/content/view/25/51/

Prerequisite for Microwaves, practical work and projects