

Number of positions

COM-501 Advanced cryptography

Vaudenay Serge	e			
Cursus	Sem.	Type	Language of	Engl
Cyber security minor	E	Opt.	teaching Credits Session Semester	4 Summ Spring Writte 120h
Cybersecurity	MA2, MA4	Opt.		
Data Science	MA2, MA4	Opt.		
Data science minor	Е	Opt.	Exam	
SC master EPFL	MA2, MA4	Opt.	Workload Weeks	
			Hours	4 we
			Courses	2 we
			Exercises	2 we

Summary

This course reviews some failure cases in public-key cryptography. It introduces some cryptanalysis techniques. It also presents fundamentals in cryptography such as interactive proofs. Finally, it presents some techniques to validate the security of cryptographic primitives.

Content

- 1. **Cryptographic security models:** security notions for encryption and authentication, game reduction techniques
- Public-key cryptography: Factoring, RSA problem, discrete logarithm problem, attacks based on subgroups
- 3. Interactive proofs: NP-completeness, interactive systems, zero-knowledge
- 4. Conventional cryptography: differential and linear cryptanalysis, hypothesis testing, decorrelation
- 5. Proof techniques: random oracles, leftover-hash lemma, Fujisaki-Okamoto transform

Keywords

cryptography, cryptanalysis, interactive proof, security proof

Learning Prerequisites

Required courses

• Cryptography and security (COM-401)

Important concepts to start the course

- Cryptography
- · Mathematical reasoning
- Number theory and probability theory
- Algorithmics
- Complexity

Learning Outcomes

By the end of the course, the student must be able to:

• Assess / Evaluate the security deployed by cryptographic schemes

Advanced cryptography Page 1 / 3

- Prove or disprove security
- Justify the elements of cryptographic schemes
- Analyze cryptographic schemes
- · Implement attack methods
- Model security notions

Teaching methods

ex-cathedra

Expected student activities

- active participation during the course
- take notes during the course
- do the exercises during the exercise sessions
- complete the regular tests and homework
- read the material from the course
- self-train using the provided material
- do the midterm exam and final exam

Assessment methods

Mandatory continuous evaluation:

- homework (30%)
- regular graded tests (30%)
- midterm exam (40%)

Final exam averaged (same weight) with the contiuous evaluation, but with final grade between final_exam-1 and final_exam+1.

Supervision

Office hours No
Assistants Yes
Forum No

Others Lecturers and assistants are available upon appointment.

Resources

Bibliography

- Communication security: an introduction to cryptography. Serge Vaudenay. Springer 2004.
- A computational introduction to number theory and algebra. Victor Shoup. Cambridge University Press 2005.
- Algorithmic cryptanalysis. Antoine Joux. CRC 2009.

Ressources en bibliothèque

- Algorithmic cryptanalysis / Joux
- Communication security / Vaudenay
- A computational introduction to number theory and algebra / Shoup

Websites

Advanced cryptography Page 2 / 3

EPFL

• http://lasec.epfl.ch/teaching.shtml

Advanced cryptography Page 3 / 3