2P7L	Ξ	Ρ	۶	L
------	---	---	---	---

ME-201	Continuum mechanics					
	Kolinski John Martin					
Cursus		Sem.	Туре	Language of	English	
Mechanical en	gineering	BA4	Obl.	teaching	English	
				Credits	4	
				Session	Summer	
				Semester	Spring	
				Exam	Written	
				Workload	120h	
				Weeks	14	
				Hours	4 weekly	
				Courses	3 weekly	
				Exercises	1 weekly	
				Number of positions		

Summary

ME-201

The student acquires the basic operations of indicial notation, orthogonal transformation, Cartesian tensors; various deformation and stress tensors; conservation laws; constitutive equations for simple fluids and solids with examples on Newtonian fluids and linear elastic solids.

Content

The course elaborates on the generalization of rational mechanics to the continuum mechanics and deduces the conservation laws as well as the materials constitutive behaviour. The main chapters of the course cover the following points: cartesian tensors, kinematics and dynamics of continuous media, energy, constitutive laws, applications to solids and fluids.

Keywords

Kinematics, Dynamics, Solid, Fluid

Learning Prerequisites

Required courses

- Linear algebra
- Mechanics of structures I
- Mechanics of structures II
- Analysis III
- Analysis IV

Recommended courses

Important concepts to start the course

• Apply the concepts of rigid and deformable body mechanics and of continuum mechanics to model and analytically solve problems of statics, structural stress analysis or simple mechanisms

 Apply the principle of statics and structural mechanics to analyse and design assemblies of simple mechanical elements in the framework of statics, buckling; compute thermal stresses for simple cases

Learning Outcomes

• Model and analytically solve problems of statics, structural stress analysis or simple mechanisms, S1

Transversal skills

• Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Ex cathedra lectures and exercise sessions

Assessment methods

Examen écrit (100%)

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Bibliography

John Botsis & Michel Deville, *Mécanique des milieux continus: une introduction*, Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 2006.

Ressources en bibliothèque

• Mécanique des milieux continus / Botsis

Prerequisite for

- incompressible fluid mechanics
- solid mechanics