

EE-382 Machines électriques (pour GM)

Hodder André

Cursus	Sem.	Type
Génie mécanique	BA5	Obl.

Langue français d'enseignement Crédits 3 Hiver Session Automne Semestre Examen **Ecrit** 90h Charge Semaines 14 3 hebdo Heures Cours 2 hebdo TP 1 hebdo Nombre de places

Résumé

L'objectif de ce cours est d'acquérir les connaissances de base liées aux machines électriques (conversion électromécanique). Le cours porte sur le circuit magnétique, le transformateur, les machines synchrones, à courant continu et les moteurs pas à pas.

Contenu

- 1. Circuit magnétique et inductances
 - Rappel de lois fondamentales équations de Maxwell
 - · Circuit magnétique
 - Inductances
- 2. Transformateur
 - Monophasé (idéal et réel)
 - Triphasé
 - Fonctionnement en parallèle
 - Paramètres
 - Transformateurs spéciaux
- 3. Eléments de base des machines
 - Champ tournant
 - Couple électromagnétique (couple dû à l'interaction de 2 champs, couple réluctant, couple en fonction des inductances)
 - Tension induite de mouvement
- 4. Machine asynchrone
 - Schéma équivalent
 - Bilan de puissance
 - Caractéristique de couple
 - Démarrage
 - Paramètres
 - Moteur à effet pelliculaire
 - Moteur asynchrone monophasé
- 5. Machine synchrone

- Machines à pôles lisses et à pôles saillants
- Caractéristique de couple
- Fonctionnement en parallèle sur le réseau, synchronisation et diagramme des puissances (topogramme)
- 6. Machine à courant continu
 - Enroulements (inducteur, induit, de commutation, de compensation)
 - Moteurs (à aimants permanents, à excitation séparée, shunt, série, compound)
 - · Génératrices (à excitation séparée, shunt)
 - Moteur universel
- 7. Moteur synchrone à aimants permanents (BLDC)
 - Principe de fonctionnement
 - Commutation par blocs à 120°
- 8. Moteur pas à pas
 - Principe de fonctionnement
 - Moteurs (réluctant, électromagnétique, réluctant polarisé)

Mots-clés

- Machines électriques
- Circuit magnétique
- Transformateur
- Machine asynchrone
- · Machine synchrone
- Machine à courant continu
- Moteur synchrone à aimants permanents
- · Moteur pas à pas

Compétences requises

Cours prérequis obligatoires

• Electrotechnique

Cours prérequis indicatifs

• La connaissance des bases de l'électromagnétisme (champs H et B, matériaux, ...) est un plus, mais n'est pas une nécessité

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Caractériser les machines électriques
- Analyser le comportement des machines électriques
- Modéliser les machines électriques
- Choisir ou sélectionner un moteur pour une application donnée
- Concevoir un système incluant des machines électriques

Compétences transversales

• Dialoguer avec des professionnels d'autres disciplines.

Méthode d'enseignement

Ex cathedra, démonstrations et exercices.

Méthode d'évaluation

Ecrit

Ressources

Bibliographie

Polycopié Machines Electriques, cours pour ingénieurs mécaniciens

Ressources en bibliothèque

• Machines Electriques / Hodder

Polycopiés

Machines électriques (troisième édition) André Hodder N°165 Disponible à la librairire La Fontaine

Préparation pour

Entraînements électriques (drives) Commande de moteurs par microprocesseur Mécatronique