

Brunner Stephan, Graves Jonathan				
Cursus	Sem.	Туре	l anguage of	English
Physics	BA4	Obl.	teaching	English
			Credits	4
			Session	Summer
			Semester	Spring
			Exam	Written
			Workload	120h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly
			Number of positions	

Summary

This course complements the Analysis and Linear Algebra courses in providing further mathematical background and practice required for 3rd year physics courses, in particular electrodynamics and quantum mechanics.

Content

Review of essential linear algebra concepts and their application to function spaces. Solving Ordinary Differential Equations (ODEs), in particular linear 2nd order: Frobenius method, boundary value problems, Sturm-Liouville problems. Fourier analysis: Fourier Series and Fourier Transforms. Special functions. Methods for solving Partial Differential Equations (PDEs).

Learning Prerequisites

Required courses Analyse I, II and III. Linear algebra I and II Physics I, II, and III.

Recommended courses Computational Physics I.

Important concepts to start the course

Linear algebra: Vector spaces, inner product spaces, linear operators, eigenvalue problems, matrix diagonalisation. Analysis: basic theory of ODEs, vector calculus. Complex algebra and towards the end of the course, complex analysis.

Learning Outcomes

By the end of the course, the student must be able to:

• Apply the methods presented in the course for solving (differential) equations met in various fields of physics.

Teaching methods

Ex cathedra lecture and assisted exercises in the classroom

Assessment methods

Written exam

Resources

Bibliography

The main reference for the course is the book by Arfken: G. B. Arfken, H. J. Weber, and F. E. Harris "Mathematical Methods for Physicists, A Comprehensive Guide" 7th edition, Academic Press 2013. Hard copies and electronic version available through EPFL library.

Ressources en bibliothèque

• Mathematical Methods for Physicists, A Comprehensive Guide

Moodle Link

http://moodle.epfl.ch/course/view.php?id=14376