CIVIL-459 **Deep learning for autonomous vehicles**

Alahi Alexandre, Kreiss Sven				
Cursus	Sem.	Туре	Languaga of	Englich
Civil Engineering	MA2, MA4	Opt.	teaching	English
			Credits	4
			Session	Summer
			Semester	Spring
			Exam	During the semester
			Workload	120h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly
			Number of positions	

Summary

Self-driving cars, delivery robots, or self-moving segways. Most of these AI-driven transportation systems rely on four pillars: 1-Sensing, 2-Perceiving, 3-Predicting, and 4-Acting steps. Students will learn the fundamentals behind these four pillars, i.e., the technology behind autonomous vehicles.

Content

Introduction to AI-driven systems

- 2. Sensing modalities
- 3. Perceiving: how to extract meaningful information from raw data?
 - Intro to machine learning (fundamentals to regression and classification)
 - Intro to deep learning (Neural Network, CNN, regularization techniques)
 - State-of-the-art techniques for localisation, detection, and tracking objects in the context of autonomous

vehicles.

- 4- Predictive models
 - Intro to Recurrent Neural Networks
 - Learning to clone socially-accepted human behavior
- 5- Acting: challenges and ethical impacts

Students will implement perception tasks for autonomous vehicles and participate to a human-robot tandem race.

Keywords

Deep Learning, Autonomous Vehicle, Artificial intelligence, Machine learning, Self-driving car

Learning Prerequisites

Required courses

Fundamentals in Analysis, Linear algebra, Probability and Statistics. Programming skills.

Learning Outcomes

By the end of the course, the student must be able to:

- Define the fundamental steps behind an AI-driven system
- Design the building steps of an autonomous vehicle
- Implement an algorithm for each step
- Explain and understand the challenges and ethical impacts

Ex cathedra

Assessment methods

Lab projects (in group): 30% Midterm: 30% Final project (in group): 40%