

# MATH-325 **Dynamics and bifurcation**

| Cursus      | Sem. | Type |
|-------------|------|------|
| Mathematics | BA6  | Opt. |

Language of English teaching Credits Session Summer Semester Spring Exam Written Workload 150h Weeks 14 Hours 4 weekly 2 weekly Courses Exercises 2 weekly Number of positions

### Summary

Introduction to local and global behavior of nonlinear dynamical systems arising from maps and ordinary differential equations. Theoretical and computational aspects studied.

#### Content

One dimensional flows

Elementary bifurcations

One dimensional maps

Systems of ordinary differential equations: planar systems and phase portraits, non linear systems, Lyapunov stability, mechanical systems, La-Salle invariance principle, index in two dimensional vector fields, periodic orbits and limit cycles, Poincaré-Andronov-Hopf bifurcation, structural stability.

#### **Keywords**

Systèmes dynamiques à temps discrets et à temps continu, discrete and continuous dynamical systems, elementary bifurcations: saddle-node, transcritical, hysteresis, pitchfork; Lyapunov stability, Poincaré maps, mechanical systems.

# **Learning Prerequisites**

# Required courses

Analyse I, Analyse II, Algebre linéaire

# **Recommended courses**

Equations différentielles ordinaires

### **Learning Outcomes**

By the end of the course, the student must be able to:

- Analyze dynamical systems in continue and discrete time
- Describe local and global behavior of differential equations and maps
- Work out / Determine stability properties as a function of one or more parameters

#### Transversal skills

- Communicate effectively, being understood, including across different languages and cultures.
- Communicate effectively with professionals from other disciplines.

Dynamics and bifurcation Page 1 / 2



• Use a work methodology appropriate to the task.

#### **Teaching methods**

Lectures 2 hours a week and exercise sessions 2 hours a week.

#### **Expected student activities**

Attendance to lectures, attendance to exercise sessions, solution of homework problems that may involve theoretical or numerical solutions, give a final exam.

#### **Assessment methods**

Final exam.

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés

# Supervision

Office hours No
Assistants Yes
Forum Yes

# Resources

# **Bibliography**

Introduction to Dynamical Systems: continuous and discrete, by Clark Robinson, 2012. Dynamics and bifurcations, by J. Hale and H. Kocak, 1991.

#### Ressources en bibliothèque

- Introduction to Dynamical Systems: continuous and discrete / Robinson
- (electronic version)
- Dynamics and bifurcations / Hale & Kocak

### Notes/Handbook

Lecture notes will be given, to be completed by the students.

#### Websites

• http://moodle.epfl.ch

Dynamics and bifurcation Page 2 / 2