

PHYS-318	Optique II				
	Houdré Romuald				
Cursus		Sem.	Type	Langue	français
Physique		BA6	Opt.	d'enseignement	ITariçais
				Crédits	3
				Session	Eté
				Semestre	Printemps
				Examen	Oral
				Charge	90h
				Semaines	14
				Heures	3 hebdo
				Cours	2 hebdo
				Exercices	1 hebdo
				Nombre de	

places

Résumé

Introduction aux concepts de base de l'optique classique et moderne. Les étudiants acquièrent des outils pour comprendre et analyser les phénomènes optiques et pour pouvoir concevoir des systèmes optiques divers.

Contenu

1. Théorie de la cohérence

- 1.1 Cohérence spatiale et temporelle
- 1.2 Cohérence partielle et mutuelle
- 1.3 Interférométrie de corrélation

2. Photons

- 2.1 Quantification du champs électromagnétique
- 2.2 Statistique de photons
- 2.3 Détection de photons

3. Génération de la lumière

- 3.1 Transitions optiques
- 3.2 Emission spontanée et stimulée
- 3.3 Relations d'Einstein

4. Lasers

- 4.1 Amplification de la lumière
- 4.2 Résonateurs optiques
- 4.3 Caractéristiques des lasers

Compétences requises

Cours prérequis indicatifs

Optique I

Concepts importants à maîtriser

Optique géométrique

Ondes: propagation, interférence, diffraction

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

• Exposer un des chapitre du cours

Optique II Page 1 / 2

• Résoudre un exercice portant sur un des chapitre du cours

Méthode d'enseignement

Ex cathedra avec exercices en classe

Méthode d'évaluation

examen oral portant sur une question de cours et un exercice (30min + 30min préparation) seul document autorisé un formulaire recto-verso manuscrit

Ressources

Bibliographie

Polycopié Optics, J. Hecht Quantum Electronics, A. Yariv, J. Wiley & sons The Quantum Theory of Light, R. Loudon, Clarendon Press Statistical Optics, J.W. Goodman, J. Wiley & sons

Ressources en bibliothèque

- Quantum electronics / Yariv
- Optics / Hecht (ebook version)
- Optics / Hecht (print version)
- Statistical optics / Goodman
- The quantum theory of light / Loudon

Optique II Page 2 / 2