Energy supply, economics and transition

Ballif Christophe, Binder Claudia R., Thalmann Philippe

	1 /	,			
Cursus		Sem.	Туре	l anguage of	English
Energy Science and Technology	,	MA2	Obl.	teaching	Ligisti
				Credits	2
				Session	Summer
				Semester	Spring
				Exam	Written
				Workload	60h
				Weeks	14
				Hours	2 weekly
				Courses	2 weekly
				Number of positions	

Summary

ENG-410

This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how the transition to a renewable energy system can be fostered.

Content

Energy resources (Christophe Ballif)

- Available resources and their properties (finite resources like fossil, nuclear fuel, vs hydro, non-hydro, renewable ressources such as solar, wind, geothermal biomass)
- General aspects of energy management (grid transport, fossil fuel transport, heat and electricity storage, power-to-gas, heat pumps, district heating and cooling....), including costs aspects and perspectives

Energy economics (Philippe Thalmann)

- Principles: supply and demand, investment decision, internal and external costs, support and incentive schemes, etc.
- Current direct and indirect cost (environmental) and cost perspective of the various energy sources
- Economic growth and energy needs, decoupling
- Energy policy: goals and instruments
- A case study: a CO2 neutral energy system in Switzerland

Energy transition (Claudia R. Binder)

- Governance perspectives and social-technical dimensions
- Energy system transitions (from a fossil fuel to a CO2 neutral system) as socio-technical change processes
- Insights into drivers and barriers for the socio-technical transition of the energy system
- Routines, visions and disruptive change(s) from a resilience perspective
- Governance transitions of urban utilities

Keywords

Energy resources Energy supply Energy prices Energy costs Energy transition Renewable energy Sustainability

Learning Outcomes

By the end of the course, the student must be able to:

- Critique theories and proposals related to energy supply
- Propose various scenarios for energy systems and their evolution
- Reason on technical, social, political and economic issues
- Explain the relationships between physical energy resources and energy supply
- Differentiate between scientific and propaganda arguments
- Restate concepts and mechanisms seen in class

Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- Set objectives and design an action plan to reach those objectives.
- Communicate effectively with professionals from other disciplines.
- Access and evaluate appropriate sources of information.

Teaching methods In-depth teaching and educational support.

Assessment methods Written exam