MATH-442	Statistical theory				
	Koch Erwan				
Cursus		Sem.	Туре	l anguage of	English 5 Winter Fall Written 150h 14 4 weekly 2 weekly 2 weekly
Data Science		MA1, MA3	Opt.	teaching Credits	
Ingmath		MA1, MA3	Opt.		
Mathématicien		MA1, MA3	Opt.	Session Semester	
				Exam Workload Weeks Hours Courses Exercises Number of positions	

Summary

The course aims at developing certain key aspects of the theory of statistics, providing a common general framework for statistical methodology. While the main emphasis will be on the mathematical aspects of statistics, an effort will be made to balance rigor and intuition.

Content

• Stochastic convergence and its use in statistics: modes of convergence, weak law of large numbers, central limit theorem.

- Formalization of a statistical problem : parameters, models, parametrizations, sufficiency, ancillarity, completeness.
- · Point estimation: methods of estimation, bias, variance, relative efficiency.

• Likelihood theory: the likelihood principle, asymptotic properties, misspecification of models, the Bayesian perspective.

• Optimality: decision theory, minimum variance unbiased estimation, Cramér-Rao lower bound, efficiency, robustness.

• Testing and Confidence Regions: Neyman-Pearson setup, likelihood ratio tests, uniformly most powerful (UMP) tests, duality with confidence intervals, confidence regions, large sample theory, goodness-of-fit testing.

Learning Prerequisites

Recommended courses

Real Analysis, Linear Algebra, Probability, Statistics.

Learning Outcomes

By the end of the course, the student must be able to:

- Formulate the various elements of a statistical problem rigorously.
- Formalize the performance of statistical procedures through probability theory.
- Systematize broad classes of probability models and their structural relation to inference.
- Construct efficient statistical procedures for point/interval estimation and testing in classical contexts.
- Derive certain exact (finite sample) properties of fundamental statistical procedures.
- Derive certain asymptotic (large sample) properties of fundamental statistical procedures.
- Formulate fundamental limitations and uncertainty principles of statistical theory.
- Prove certain fundamental structural and optimality theorems of statistics.

Teaching methods

Lecture ex cathedra using slides as well as the blackboard (especially for some proofs). Examples/exercises presented/solved at the blackboard.

Assessment methods

Final written exam.

Dans le cadre de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours	No
Assistants	Yes
Forum	Yes

Resources

Ressources en bibliothèque

- Mathematical Statistics / Knight
- Mathematical Statistics (e-book)

Notes/Handbook

The slides will be available on Moodle.