Kapralov Michael

Rapialov Intellaci				
Cursus	Sem.	Туре	Language of	English
Computational science and Engineering	MA2, MA4	Opt.	teaching	Englion
Computer and Communication Sciences		Opt.	Credits	7
Computer science minor	E	Opt.	Session Semester	Summer Spring Written 210h 14 7 weekly
Computer science	MA2, MA4	Obl.	Exam	
Cyber security minor	E	Opt.	Workload Weeks	
Cybersecurity	MA2, MA4	Obl.	Hours	
Data Science	MA2, MA4	Obl.	Courses	4 weekly
Data science minor	E	Opt.	Exercises Number of	3 weekly
Robotics, Control and Intelligent Systems		Opt.	positions	
SC master EPFL	MA2, MA4	Obl.		

Summary

A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a repertory of basic algorithmic solutions to problems in many domains.

Content

Algorithm analysis techniques: worst-case and amortized, average-case, randomized, competitive, approximation. Basic algorithm design techniques: greedy, iterative, incremental, divide-and-conquer, dynamic programming, randomization, linear programming. Examples from graph theory, linear algebra, geometry, operations research, and finance.

Keywords

See content.

Learning Prerequisites

Required courses

An undergraduate course in Discrete Structures / Discrete Mathematics, covering formal notation (sets, propositional logic, quantifiers), proof methods (derivation, contradiction, induction), enumeration of choices and other basic combinatorial techniques, graphs and simple results on graphs (cycles, paths, spanning trees, cliques, coloring, etc.).

Recommended courses

An undergraduate course in Data Structures and Algorithms. An undergraduate course in Probability and Statistics.

Important concepts to start the course

Basic data structures (arrays, lists, stacks, queues,trees) and algorithms (binary search; sorting; graph connectivity); basic discrete mathematics (proof methods, induction, enumeration and counting, graphs); elementary probability and statistics (random variables, distributions, independence, conditional probabilities); data abstraction.

Learning Outcomes

By the end of the course, the student must be able to:

• Use a suitable analysis method for any given algorithm

- Prove correctness and running-time bounds
- Design new algorithms for variations of problems studied in class
- Select appropriately an algorithmic paradigm for the problem at hand
- Define formally an algorithmic problem

Teaching methods

Ex cathedra lecture, reading

Assessment methods

Supervision

Others

For details, see the course web page.

Resources

Bibliography See web page for the course.

Ressources en bibliothèque

- Randomized Algorithms / Motwani
- Approximation Algorithms / Vazirani
- Computational Complexity / Papadimitrou
- Algebraic Complexity Theory / Buergisser
- Quantum Computation and Quantum Information / Nielsen

Notes/Handbook

Class notes and references for the running semester will be provided as needed within a few days after each lecture.