CS-449 Systems for data science

Kermarrec Anne-Marie

Cursus	Sem.	Туре	Language of	English
Civil & Environmental Engineering		Opt.	teaching	
Computational science and Engineering	MA2, MA4	Opt.	Credits Session	6 Summor
Data Science	MA2, MA4	Obl.	Semester	Summer Spring
Data science minor	E	Opt.	Exam	During the
			Workload	semester 180h

Weeks

Hours

Courses

Project

Number of positions

Exercises

Summary

The course covers fundamental principles for understanding and building systems for managing and analyzing large amounts of data.

Content

Big data systems design and implementation :

- Distributed systems for data science
- Data management : locality, accesses, partitioning, replication
- Distributed Machine Learning Systems : federated learning/parameter server/decentralized learning
- Massively parallel processing operations

Large-scale storage systems :

- Data structures : File systems, Key-value stores, DBMS
- Consistency models. The CAP theorem. NoSQL and NewSQL systems
- Transactions

Large-scale processing :

- Parallel processing
- Streaming Processing
- Online Processing
- Graph Processing

Keywords

Distributed systems, Parallel programming, Large-scale storage systems, Large-scale data management

Learning Prerequisites

Required courses CS-322: Introduction to database systems

Recommended courses

14

6 weekly

2 weekly

2 weekly

2 weekly

CS-206 Parallelism and concurrency

Important concepts to start the course

• Algorithms and data structures.

• Scala and/or Java programming languages will be used throughout the course. Programming experience in one of these languages is strongly recommended.

· Basic knowledge or computer networking and distributed systems

Learning Outcomes

By the end of the course, the student must be able to:

- Choose systems parameters, data layouts, and application designs for database systems and applications.
- Develop data-parallel analytics programs that make use of modern clusters and cloud offerings to scale up to very large workloads.
- Analyze the trade-offs between various approaches to large-scala data management and analytics, depending on efficiency, scalability, and latency needs
- Choose the most appropriate existing systems architecture and technology for a task

Teaching methods

Lectures, exercises and practical work

Expected student activities

During the semester, the students are expected to:

- attend the lectures in order to ask questions and interact with the professor,
- attend the exercises session to solve and discuss exercises,
- solve practical homeworks and/or finish a project during the semester,
- · take the exams during the semester

Assessment methods

Homeworks, written examinations, project. Continuous control

Supervision

Office hours	Yes
Assistants	Yes
Forum	Yes
Others	Office ours by appointment

Resources

Bibliography

Relevant resources (textbook chapters, articles, and videos) posted on moodle page.