

150h

4 weekly 2 weekly

2 weekly

14

Workload

Courses Exercises

Number of positions

Weeks

Hours

# MATH-441 Robust and nonparametric statistics

| Cursus        | Sem.     | Туре | Language of                                | English               |
|---------------|----------|------|--------------------------------------------|-----------------------|
| Data Science  | MA2, MA4 | Opt. | teaching<br>Credits<br>Session<br>Semester | English               |
| Ingmath       | MA2, MA4 | Opt. |                                            | 5<br>Summer<br>Spring |
| Mathématicien | MA2      | Opt. |                                            |                       |
|               |          |      | Exam                                       | Oral                  |

## Remark

Cours donné en alternance sur deux ans (pas donné en 2020-21)

### Summary

In the decades from 1930 to 1950, many rank-based statistics were introduced. These methods were received with much interest, because they worked under weak conditions. Starting in the late 1950, a theory of robustness was added. The course gives an overview of these two approaches to data analysis.

### Content

### I. Robust Statistics

- Global and local robustness indicators: Breakdown point, influence function
- Hampel's lemma
- Huber's theory: M-estimators, L-estimators
- Robust tests
- Robust regression

### **II. Linear Rank Tests**

- Test of Mann-Whitney-Wilcoxon and general linear rank tests: asymptotic theory, R-estimators
- Rank correlations
- U-statistics
- · Comparison of tests: Pitman efficacy
- Permutation tests

### III. Estimation of smooth functions

- Curve fitting: polynomial regression, splines
- · Smoothing: non parametric estimation, degree of smoothness, bias vs. variance, penalization
- Kernel estimators: definition, properties
- Smoothing splines
- Local regression
- Wavelets

### **Learning Prerequisites**

# Required courses Introduction to Probability, Introduction to Statistics

# Learning Outcomes

By the end of the course, the student must be able to:

- Expound the content of the course.
- Apply the statistical methods explained in the course.
- Sketch the proofs of the theoretical results given in the course.
- Choose the appropriate robust or non parametric methods for a given data analysis problem.
- Differentiate between robust and non-parametric methods.
- Generalize the tools treated in the course to other problems.
- Apply spline and kernel smoothers.
- Apply M-estimations in a variety of situations.

## **Transversal skills**

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Manage priorities.

## **Teaching methods**

Ex cathedra lecture and exercises in the classroom

## **Expected student activities**

Do all the exercices. Prepare each week for the course. Participate actively in the course.

## Assessment methods

Oral exam.

Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

## Resources

Bibliography

Introduction to the theory of nonparametric statistics by R.H. Randles and D.A. Wolfe, Wiley. All of nonparametric statistics by L. Wasserman, Springer. Robust Statistics: The approach based on influence functions by F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, W.A. Stahel, Wiley. Robust Statistics by P.J. Huber, Wiley (second edition). Robust Statistics: Theory and Methods by D.R. Martin, M. Salibian-Barrera, R.A. Maronna, V.J. Yohai, Wiley.

## Ressources en bibliothèque

- Introduction to the theory of nonparametric statistics / Randles & Wolfe
- Robust Statistics / Hampel & al.
- Robust Statistics / Martin & al.
- All of nonparametric statistics / Wasserman