

MATH-101(en) Analysis I (English)

Svalo	l ik	Ro	he	rto
-------	------	----	----	-----

Cursus	Sem.	Type
Chemistry and chemical engineering	BA1	Obl.
Civil Engineering	BA1	Obl.
Communication systems	BA1	Obl.
Computer science	BA1	Obl.
Electrical and Electronical Engineering	BA1	Obl.
Environmental Sciences and Engineering	BA1	Obl.
Life Sciences Engineering	BA1	Obl.
Materials Science and Engineering	BA1	Obl.
Mechanical engineering	BA1	Obl.
Microtechnics	BA1	Obl.

Language of teaching	English
Coefficient	6
Session	Winter
Semester	Fall
Exam	Written
Workload	180h
Weeks	14
Hours	6 weekly
Courses	4 weekly
Exercises	2 weekly
Number of positions	239

Summary

We study the fundamental concepts of analysis, calculus and the integral of real-valued functions of a real variable.

Content

- Reasoning, proving and arguing in mathematics
- Numbers, structures and functions
- Sequences, limit and continuity
- Series of reals
- Real-valued functions of a real variable and convergence
- Differential Calculus and the Integral

Keywords

Real numbers, function, sequence, convergent/divergent sequence, limit, subsequence, limit of a function, continuous function, series of real numbers, convergent/divergent series, absolute convergence, derivative, class C^k, mean value theorem, Taylor's theorem, Taylor series, Riemann integral, indefinite integral, intermediate value theorem.

Learning Outcomes

- The intended learning outcomes of this course are that students acquire the following capacities:
- Reason rigorously to analyse problems
- Choose appropriate analytical tools for problem solving.
- Be able to conceptualise in view of the applications of analysis.
- · Apply efficiently mathematical concepts for problem solving by means of examples and exercises
- Analyze and to solve new problems.
- Master the basic tools of analysis as, for example, notions of convergence, sequences and series.
- Studying rigorously real functions we intend that students will demonstrate a deep understanding of calculus

Teaching methods

Ex cathedra/online lectures and exercise sessions with tutors and student assistants.

Assessment methods

Written exam

Analysis I (English)
Page 1 / 2

Supervision

Office hours No
Assistants Yes
Forum No

Others Tutoring of exercises

other measures to be defined

Analysis I (English) Page 2 / 2