

# ME-453 **Hydraulic turbomachines**

| Aveilari François, Vagnoni Elena     |          |      |
|--------------------------------------|----------|------|
| Cursus                               | Sem.     | Type |
| Energy Management and Sustainability | MA1, MA3 | Opt. |
| Energy Science and Technology        | MA1, MA3 | Obl. |
| Mechanical engineering               | MA1, MA3 | Opt. |
| Mechanics                            |          | Opt. |
| Nuclear engineering                  | MA1      | Opt. |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 4        |
| Session              | Winter   |
| Semester             | Fall     |
| Exam                 | Written  |
| Workload             | 120h     |
| Weeks                | 14       |
| Hours                | 4 weekly |
| Courses              | 3 weekly |
| Exercises            | 1 weekly |
| Number of positions  |          |

### **Summary**

Master lecture on Hydraulic Turbomachines: impulse and reaction turbines, pumps and pump-turbines.

#### Content

- Turbomachine equations, mechanical power balance in a hydraulic machines, moment of momentum balance applied to the runner/impeller, generalized Euler equation.
- Hydraulic characteristic of a reaction turbine, a Pelton turbine and a pump, losses and efficiencies of a turbomachine, real hydraulic characteristics.
- · Similtude laws, non dimensional coefficients, reduced scale model testing, scale effects.
- Cavitation, hydraulic machine setting, operating range, adaptation to the piping system, operating stability, start stop transient operation, runaway.
- Reaction turbine design: general procedure, general project layout, design of a Francis runner, design of the spiral casing and the distributor, draft tube role, CFD validation of the design, design fix, reduced scale model experimental validation.
- Pelton turbine design: general procedure, project layout, injector design, bucket design, mechanical problems.
- Centrifugal pump design: general architecture, energetic loss model in the diffuser and/or the volute, volute design, operating stability.

### **Learning Prerequisites**

### **Recommended courses**

Incompressible Fluids Mechanics Introduction to turbomachines

#### **Learning Outcomes**

By the end of the course, the student must be able to:

- Formulate the operating point of a hydraulic turbomachine
- Specify a type of hydraulic turbine
- Sketch the layout of a hydraulic turbomachine
- Select appropriately the dimensions of a hydraulic turbomachine

#### Transversal skills

Hydraulic turbomachines Page 1 / 2



- Use a work methodology appropriate to the task.
- Communicate effectively with professionals from other disciplines.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.

### **Teaching methods**

ex cathedra lectures with working case studies

### **Expected student activities**

attendance at lectures completing exercises and reading written material

### **Assessment methods**

written exam

#### Resources

## **Bibliography**

P. HENRY: Turbomachines hydrauliques - Choix illustré de réalisation marquantes, PPUR, Lausanne, 1992.

Franc, Avellan et al., Cavitation, EDP Grenoble, 1994

Handout and Scientifc Litterature from LMH, Industry, International Association

### Ressources en bibliothèque

- Cavitation / Franc
- Turbomachines hydrauliques / Henry

### Notes/Handbook

slides handout Handbook

### Websites

• http://lmh.epfl.ch/teaching

## Prerequisite for

Cavitation, Hydroacoustic, Master Project

Hydraulic turbomachines Page 2 / 2