Advanced control systems

Karimi Alireza				
Cursus	Sem.	Туре	Language of	English
Energy Management and Sustainability	MA2, MA4	Opt.	teaching Credits Session Semester	Linghorn
Energy Science and Technology	MA2, MA4	Opt.		3 Summer Spring
Mechanical engineering	MA2, MA4	Opt.		
Microtechnics	MA2, MA4	Opt.	Exam	Written
Robotics, Control and Intelligent Systems		Opt.	Workload Weeks	90h 14
Robotics	MA2, MA4	Opt.	Hours	3 weekly
Systems Engineering minor	E	Opt.	Courses Project	2 weekly 1 weekly
			Number of positions	IWEEKIY

Summary

ME-524

This course covers some theoretical and practical aspects of robust and adaptive control. This includes H-2 and H-infinity control in model-based and data-driven framework by convex optimization, direct, indirect and switching adaptive control. The methods are implemented in a hands-on lab.

Content

Stability, performance and robustness of closed-loop control systems. Robust controller design by convex optimization. Model-based H-2 and H-infinity control. Data-driven fixed structure controller design with loopshaping, H2 and H-infinity performance.

Two-degree of freedom RST digital polynomial controller. Pole placement technique. Robust pole placement with Q parameterization. Parameter adaptation algorithms. Direct and Indirect adaptive control. Switching adaptive control. Gain-scheduled controller design.

Keywords

Adaptive control, robust control, digital RST controller.

Learning Prerequisites

Required courses Control systems + Lab Commande numeriques des systèmes dynamiques

Recommended courses

- 1. System Identification
- 2. Multivariable systems

Important concepts to start the course

- Analyze a linear dynamical system (both time and frequency responses)
- · Represent a linear system by a transfer function
- Identify a dynamic system using experimental data
- Design a PID controller
- Design a simple controller for a dynamic system

Learning Outcomes

- By the end of the course, the student must be able to:
 - Design an advanced controller for a dynamic system, A11
 - Assess / Evaluate the stability, performance and robustness of a closed-loop system, A12
 - Define (specifications) the adequate control performance for dynamic systems, A13
 - Propose several control solutions, formulate the trade-offs, choose the options, A14
 - Justify methodological choices and validate the results with respect to the specifications, A19

Transversal skills

• Write a scientific or technical report.

Teaching methods

Ex cathedra course, integrated demos and case studies, Hands-on laboratory.

Expected student activities

Hands-on laboratory in groups of two students.

Assessment methods

Hands-on lab reports (30%) and written test (70%).

Supervision

Office hours	Yes
Assistants	Yes
Forum	No

Resources

Bibliography

- 1. Feedback Control Theory by Doyle, Francis and Tannenbaum; Maxwell Macmillan, 1992.
- 2. Adaptive Control by Landau, Lozano, M'Saad and Karimi, Springer, 2011.

Ressources en bibliothèque

- Adaptive Control / Landau
- Feedback Control Theory / Doyle

Notes/Handbook

Robust and Adaptive Control, Course-notes by Alireza Karimi

Moodle Link

https://moodle.epfl.ch/course/view.php?id=15024