

# ME-464 Introduction to nuclear engineering

Fiorina Carlo, Pautz Andreas

| Cursus                        | Sem.     | Type |
|-------------------------------|----------|------|
| Energy Science and Technology | MA2, MA4 | Opt. |
| Energy minor                  | Е        | Obl. |
| Mechanical engineering        | MA2, MA4 | Opt. |

| Language of teaching | English  |
|----------------------|----------|
| Credits              | 2        |
| Session              | Summer   |
| Semester             | Spring   |
| Exam                 | Oral     |
| Workload             | 60h      |
| Weeks                | 14       |
| Hours                | 2 weekly |
| Courses              | 2 weekly |
| Number of positions  |          |

### **Summary**

This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Reactor designs, Thermal analysis of nuclear fuel, Nuclear safety and Reactor dynamics

#### Content

### Brief review of nuclear physics

- Nuclear reactions and radioactivity - Cross sections - Introductory elements of neutronics.

## Neutron diffusion and slowing down

- Monoenergetic neutrons - Angular and scalar flux - Diffusion theory as simplified case of transport theory - Neutron slowing down through elastic scattering.

# **Reactor dynamics**

- Point reactor model: prompt and delayed transients Practical applications Reactivity variations and control **Nuclear safety principles**
- Defense in Depth Radiation protection Design Basis Accidents Beyond Design Basis Accidents phenomenology Fukushima Accident

## **Nuclear Reactor Technology**

- Gen-II/III, active & passive safety systems - Gen-IV - reactor concepts: SFR, LFR, HTR, MSR

### Non-power applications of nuclear engineering

- research reactors - isotope production - medical and irradiation applications -

#### **Waste Management**

- transport, intermediate storage - waste conditioning - geological disposal and siting - reprocessing - Partitioning & Transmutation

## **Learning Outcomes**

By the end of the course, the student must be able to:

- Elaborate on neutron diffusion equation
- Formulate approximations to solving the diffusion equation for simple systems
- Describe various nuclear reactors concepts
- Explain nuclear safety principles

## Assessment methods

Oral (100%)– 25 min without preparation. Closed book.

## Resources



## **Bibliography**

Elements of Nuclear Engineering, J. Ligou, Chs. 1, 3, (4), 5, (6) – English translation of "Introduction au génie nucléaire" (PPUR, 1997)

# Ressources en bibliothèque

• Introduction au génie nucléaire / Ligou