Transportation	systems	engineering I	

Geroliminis Nikolaos				
Cursus	Sem.	Туре	l anguage of	English
Civil Engineering	BA5	Obl.	teaching	LIIGIISII
Urban Planning and Territorial Develop	ment minorH	Opt.	Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	4 Winter Fall During the semester 120h 14 4 weekly 3 weekly 1 weekly

Summary

CIVIL-351

- Introduce the major elements of transportation systems and create awareness of the broader context - Develop basic skills in applying the fundamentals of the transportation field - Understand the key concepts and physics of the transport phenomena - Connect with real transportation problems

Content

Transportation Systems and Mobility: Mobility - Activities - Land Use, Classification-Hierarchy , Multimodality-Urban Planning Demand: Demand analysis, Travel Forecasting (4-step models) Modeling and Operations: Basic assessment tools , Traffic flow modeling, Control and capacity of transport systems Design of multimodal systems: Urban Policy, Case Studies, Intro to bus operations

Teaching methods

Ex-cathedra with assisted exercises, course group projects

Assessment methods

Midterm 30% Final Exam 40% Laboratories 30%

Resources

Bibliography

Lecture notes, book chapters and handouts will be distributed throughout the semester, or posted on web.

Prerequisite for

Master classes in Transportation

"Le contenu de cette fiche de cours est susceptible d'être modifié en raison du covid-19"