| Cherkaoui Rachid                        |          |      |                                            |                       |
|-----------------------------------------|----------|------|--------------------------------------------|-----------------------|
| Cursus                                  | Sem.     | Туре | Language of                                | English               |
| Electrical and Electronical Engineering | MA2, MA4 | Opt. | teaching<br>Credits<br>Session<br>Semester | Linglish              |
| Energy Management and Sustainability    | MA2, MA4 | Opt. |                                            | 3<br>Summer<br>Spring |
| Energy Science and Technology           | MA2, MA4 | Opt. |                                            |                       |
|                                         |          |      | Exam                                       | Written               |
|                                         |          |      | Workload                                   | 90h                   |
|                                         |          |      | Weeks                                      | 14                    |
|                                         |          |      | Hours                                      | 3 weekl               |
|                                         |          |      | Courses                                    | 2 weekly              |
|                                         |          |      | Exercises                                  | 1 weekly              |
|                                         |          |      | Number of                                  |                       |

## Summary

EE-570

This course presents different types and mechanisms of electricity markets. It addresses in particular their impacts on power/distribution systems operation and consequently the appropriate strategies capable to ensure a secure and reliable functioning.

### Content

Key points of electricity market liberalization: unbundled structure, competition, studies of new paradigms, market efficiency.

**Supply and demand modeling:** definition, bidding and demand profiles, marginal cost, utility cost, revenue and benefit, complex bids for a multiple period market.

**Energy contracts and market mechanisms:** spot market vs. open energy market, forward and futures contracts, bilateral trading: long term - over the counter - electronic trading, pool trading: market clearing price - impact of demand elasticity and price CAP, risk management: price volatility - call & put options - contracts for difference, examples.

**Bidding strategies:** perfect competition vs. imperfect competition, market power: definition - HHI calculation, Game Theory and its variations: complete/incomplete information - cooperative/non cooperative game, - static/dynamic game - ..., Nash equilibrium & Pareto optima, best response function - Minmax & Maxmin methods - dominant strategy method, particular cases: Cournot & Bertrand models, examples.

**System security & ancillary services:** definitions and system security requirements, transmission facilities vs. system security, ancillary services: compulsory provision vs. provision through markets, example of balancing market mechanism, introduction to congestion management: market solution & technical solution (examples using FACTS devices or phases shifter transformers), examples.

**Transmission pricing & congestion management:** rolled-in methods: postage stamp method - contract path method - MW mile method - ..., Available Transmission Capacity calculation (ATC), PTDF calculation, TLR method, willingness to pay method, Inc-Dec method (redispatching), counter-flow methods, auctioning method (cross-borders), zonal pricing: market splitting/coupling, nodal pricing & Locational Marginal Prices (LMP) calculation: analysis of the appropriateness - application of market power - hedging (FTR, TTC, ...), examples.

## **Keywords**

Electricty market, spot market, forward/futures market, bilateral/pool trading, risk management (options & contract for difference), market power, game theory, ancillary services, balancing market, congestion management, zonal pricing, nodal pricing, hedging.

### Learning Prerequisites

#### Recommended courses



positions

# Learning Outcomes

By the end of the course, the student must be able to:

- Explain the different electricty market mechanisms
- Choose appropriate risk management instruments
- Analyze market power
- Choose appropriate congestion management mechanisms

Teaching methods Ex cathedra lectures with illustrative examples

Expected student activities attendance at the lectures; completing exercices

Assessment methods Continuous control

Resources Bibliography lecture slides