| CH-424 | Supramolecular chemistry |
|--------|--------------------------|
|        |                          |

| Severin Kay | 1        |      |                                                                                                                                      |                                                                                           |
|-------------|----------|------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Cursus      | Sem.     | Туре | l anguage of                                                                                                                         | English                                                                                   |
| Chimiste    | MA1, MA3 |      | Language of<br>teaching<br>Credits<br>Session<br>Semester<br>Exam<br>Workload<br>Weeks<br>Hours<br>Courses<br>Number of<br>positions | 2<br>Winter<br>Fall<br>During the<br>semester<br>60h<br>14<br><b>2 weekly</b><br>2 weekly |

## Summary

The course provides an introduction to supramolecular chemistry. In addition, current trends are discussed using recent publications in this area.

#### Content

- Introduction
- Basics
- Receptors for cations
- Receptors for anions
- Receptors for neural molecules
- Supramolecular coordination chemistry
- Catenanes, rotaxanes and knots
- Molecular machines
- Supramolecular catalysis
- · Self-replicating molecules
- Molecular imprinting
- Dynamic combinatorial libraries
- Foldamers

### Learning Outcomes

By the end of the course, the student must be able to:

- Recall the most important non-covalent interactions.
- Recall analytical techniques for the analysis of host-guest systems.
- Assess / Evaluate the thermodynamic driving force for the formation of self-assembled systems.
- Recall the most important classes of receptors for anions, cations, and neutral molecules.
- Recall the design principles for the construction of metallasupramolecular aggregates.
- Differentiate rotaxanes, pseudorotaxanes, catenenaes and molecular knots and machines, and recall synthetic routes to make these compounds
- Recall attempts for the bottom-up construction of molecular machines.
- Describe the basic concepts of self-replicating molecules, molecular imprinting, foldamers, and selection experiments with dynamic combinatorial libraries.

### **Expected student activities**



Summarize and discuss a recently published research article in the area of supramolecular chemistry in form of a Powerpoint presentation.

## **Assessment methods**

Written exam during the course (50%) Oral presentation during the course (50%)

# Resources

# Ressources en bibliothèque

- Supramolecular Chemistry / Steed
- Principles and Methods in Supramolecular Chemistry / Schneider