

Liveland January Anata, Ohanhafan Katu			
Hughes Joanna Agata, Oberhofer Katr	in Elisabeth		
Sem.	Туре	l anguage of	English
MA1, MA3	3 Opt.	teaching	LIIGIISII
Photonics	Opt.	Credits Session	3 Winter
		Semester Exam Workload Weeks Hours Courses Exercises	Fall Oral 90h 14 3 weekly 2 weekly 1 weekly
	Sem.	Sem.TypeMA1, MA3Opt.	Sem.TypeMA1, MA3Opt.Opt.CreditsSessionSemesterExamWorkloadWorkloadWeeksHoursCourses

Summary

This course focuses on the electronic structure of atoms, diatomic and polyatomic molecules in order to understand their ultraviolet-visible absorption and photoelectron spectra.

Content

- Review of quantum mechanics and light-matter interaction
- Group theory for spectroscopy
- Atomic spectroscopy
- Vibrational spectroscopy
- Electronic spectroscopy of diatomic and polyatomic molecules
- Photoelectron spectroscopy

Keywords

Atomic and molecular spectroscopy, light matter interaction, electronic structure, photoelectron spectroscopy, UV-VIS spectra, vibrational spectra

Learning Prerequisites

Recommended courses Spectroscopy, Physical Chemistry

Learning Outcomes

By the end of the course, the student must be able to:

- Apply quantum mechanical model systems to handle the interaction of atoms and molecules with electromagnetic radiation
- Explain the general features of absorption and photoelectron spectra and their dependence on the sample properties
- Identify the point group of a molecule
- · Construct representations of point groups and decompose them into irreducible representation
- Identify the symmetry of vibrational and electronic states using character tables
- Construct electronic configurations and term symbols for atoms and molecules
- Derive explain and apply spectroscopic transition rules for electronic transitions in atoms and molecules
- Explain and identify radiative and non-radiative relaxation processes of excited molecular states

- Assess progress against the plan, and adapt the plan as appropriate.
- Set objectives and design an action plan to reach those objectives.
- Use a work methodology appropriate to the task.
- Access and evaluate appropriate sources of information.

Assessment methods 70% oral exam, 30% homework assignments

Resources Bibliography

Modern Spectroscopy / Hollas

Ressources en bibliothèque

Modern spectroscopy / Hollas