

CH-432 Structure and reactivity

Cramer	Nicolai	

Cursus	Sem.	Type
Chimiste	MA1, MA3	Opt.

Language of English teaching Credits Winter Session Fall Semester Exam Oral Workload 90h Weeks 14 2 weekly Hours 2 weekly Courses Number of positions

Summary

To develop a detailed knowledge of the key steps of advanced modern organic synthesis going beyond classical chemistry of olefins and carbonyls.

Content

- 1. Repetition of the chemistry of olefins and carbonyls
- limitations
- 2. Rearrangements
- Sigmatropic: Claisen, Ireland-Claisen, Johnson-Claisen, Eschenmoser, Wittig, Evans-Mislow
- Reactive intermediates : cations, carbenes, nitrenes
- 3. Cyclisations and Cycloadditions
- Pericyclic reactions
- Diels-Alder (normal, hetero, inverse electron demand)
- Dipolar cycloadditions
- 4. Radical- and Photochemistry
- 5. Strrategy of Umpolung
- Stoichiometric and catalytic
- 6. Metal-catalysis in Organic Chemistry
- Cross-coupling and metathesis
- Olefins and C-H bonds functionalization
- Synthesis of carbo- and heterocyclic systems

Learning Outcomes

By the end of the course, the student must be able to:

• Develop a detailed knowledge of the key steps of advanced modern organic synthesis going beyond classical chemistry of olefins and carbonyls

Transversal skills

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Demonstrate the capacity for critical thinking

Teaching methods

ex cathedra lecture

Assessment methods

Structure and reactivity Page 1 / 2

final oral exam

Resources

Websites

• http://scgc.epfl.ch/telechargement_cours_chimie

Structure and reactivity Page 2 / 2