

MATH-326 Rational quadratic forms

Cursus	Sem.	Туре	Language of	English
Mathematics	BA5	Opt.	teaching	Linglish
			Credits	5
			Session	Winter
			Semester	Fall
			Exam	Written
			Workload	150h
			Weeks	14
			Hours	4 weekly
			Courses	2 weekly
			Exercises	2 weekly
			Number of positions	

Remark

pas donné en 2020-21

Summary

Given a quadratic equation, e.g. $x^2 + 2^*y^2 = 81$, how can we decide whether there is a rational solution (x,y)? This basic question is what the theory of Rational Quadratic Forms is all about. The course gives an introduction and highlights fundamental techniques and results.

Content

- Quadratic Forms over a Field
- p-Adic Numbers
- Quadratic Forms over Local Fields
- Tools from the Geometry of Numbers
- Quadratic Forms over the Rationals
- Quadratic Forms over the Integers

Keywords

quadratic forms, p-adic numbers, geometry of numbers, primes in arithmetic progressions

Learning Prerequisites

Required courses Linear Algebra I + II Analysis I + II

Recommended courses Rings and Fields

Teaching methods

ex-cathedra lectures + discussion based exercise sessions

Assessment methods

Bonus system (up to 10% of final exam) Exam (written) Dans le cas de l'art. 3 al. 5 du Règlement de section, l'enseignant décide de la forme de l'examen qu'il communique aux étudiants concernés.

Supervision

Office hours	Yes
Assistants	No
Forum	No

Resources

Bibliography

"Rational Quadratic Forms" by J.W.S. Cassels