MICRO-570 Advanced machine learning

.5 weekly

Project Number of positions

Billard	Aude	

Cursus	Sem.	Туре	Language of	English
Energy Management and Sustainability	MA2, MA4	Opt.	teaching	4 Summer Spring
Financial engineering	MA2, MA4	Opt.	Credits	
Microtechnics	MA2, MA4	Opt.	Semester	
Robotics, Control and Intelligent Systems		Opt.	Exam	Oral
Robotics	MA2, MA4	Opt.	Workload 120h	120h 14
Systems Engineering minor	E	Opt.	Hours	5 weekly
			Courses	3 weekly
			Exercises	.5 weekly

Summary

This course will present some of the core advanced methods in the field for structure discovery, classification and non-linear regression. This is an advanced class in Machine Learning; hence, students are expected to have some background in the field.

Content

The class will be accompanied by practical session on computer, using the mldemos software (http://mldemos.epfl.ch) that encompasses more than 30 state of the art algorithms.

- Introduction to the major mathematical principles of Machine Learning
- Structure Discovery: spectral and kernel methods, kernel PCA.CCA, X-means
- Advanced Nonlinear Regression Methods
- Stochastic Modeling: Particle Filters, Reinforcement Learning and Gradient Methods

Keywords Machine learning, statistics

Learning Prerequisites

Required courses Probability & Statistics, Linear Algebra

Recommended courses Machine Learning, Pattern Recognition

Important concepts to start the course

Linear Algebra: Eigenvalue and singular value decomposition Statistics: Definitions of probability density function, marginal, likelihood, covariance, correlation Optimization: Lagrange multipliers, gradient descent, local and global optima

Learning Outcomes

By the end of the course, the student must be able to:

- Choose an appropriate method
- Apply the method properly

Transversal skills

- Use a work methodology appropriate to the task.
- Write a scientific or technical report.

Teaching methods

Ex-cathedra lectures, exercises, computer-based practical sessions

Expected student activities

Each week, students should read the selected chapters of the Lecture Notes *prior to class.* Students must attend the computer-based practice session and prepare regular reports that are graded.

Assessment methods

50% personal work during semester, 50% oral exam

Resources

Ressources en bibliothèque

• Machine Learning Technique / Billard

Notes/Handbook

Machine Learning Techniques, available at the Librairie Polytechnique. To be purchased before the class starts.

Prerequisite for

Students must be knowledgeable about machine learning and have taken a course in the area either at EPFL or elsewhere. Relevant courses at EPFL are: Applied Machine Learning - MICRO-455 Pattern Classification and Machine Learning: CS-433 Data Analysis and Model Classification - EE-516