

COM-102 Advanced information, computation, communication II

Gastpar Michael, Rimoldi Bixio

Cursus	Sem.	Type
Communication systems	BA2	Obl.
Computer science	BA2	Obl.

Language of teaching	English
Coefficient	7
Session	Summer
Semester	Spring
Exam	Written
Workload	210h
Weeks	14
Hours	6 weekly
Courses	4 weekly
Exercises	2 weekly
Number of	
positions	

Summary

Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?

Content

- I. How to measure information. Source and probability. Entropy per symbol. Source coding.
- II. Cryptography and information security. Modular arithmetic, modern algebra and number theory. The Chinese remainder theorem and RSA.
- III. Protecting information. A few finite fields. Linear speaces. Hamming distance. Linear codes. Reed-Solomon codes.

Keywords

Shannon's entropy Linear codes Reed-Solomon codes Number theory Asymmetric Cryptography, RSA

Learning Outcomes

By the end of the course, the student must be able to:

- Understand Shannon's entropy
- Construct an optimal code
- Understand elementary number theory
- Know what an abelian group is
- Recognize a hidden isomorphism
- Know how RSA works
- Know a few linear codes on simple finite fields

Transversal skills

- Take feedback (critique) and respond in an appropriate manner.
- Assess one's own level of skill acquisition, and plan their on-going learning goals.

Teaching methods

Ex cathedrra with exercises

Expected student activities

Homework (written and grades) ever week.

Assessment methods

Continuous evaluations 10% and final exam 90%

Resources

Bibliography

"Sciences de l'information", J.-Y. Le Boudec, R. Urbanke et P. Thiran, online

Ressources en bibliothèque

• Introduction aux sciences de l'information : entropie, compression, chiffrement et correction d'erreurs / Le Boudec

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=851