CS-470 Advanced computer architecture

Ienne Paolo				
Cursus	Sem.	Type	Language of	English
Computer science minor	Е	Opt.	teaching Credits Session Semester Exam Workload Weeks Hours	6 Summer Spring Written 180h 14 5 weekl
Computer science	MA2, MA4	Obl.		
Cyber security minor	E	Opt.		
Cybersecurity	MA2, MA4	Obl.		
Electrical and Electronical Engineering	MA2, MA4	Opt.		
SC master EPFL	MA2, MA4	Opt.		
			Courses	3 weekl
			Project	2 weekl
			Number of positions	

Summary

The course studies techniques to exploit Instruction-Level Parallelism (ILP) statically and dynamically. It also addresses some aspects of the design of domain-specific accelerators. Finally, it explores security challenges based on microarchitectural features and hardware isolation techniques.

Content

Pushing processor performance to its limits:

- Principles of Instruction Level Parallelism (ILP)
- Register renaming techniques
- · Prediction and speculation
- · Simultaneous multithreading
- Optimized memory hierarchies and efficient virtualization
- VLIW and compiler techniques for ILP
- Dynamic binary translation

Domain specific architectures and accelerators:

- Specificities of embedded vs. general computing processors
- Overview of DSPs and related compilation challenges
- · Basic notions of High-Level Synthesis
- Statically and dynamically scheduled accelerators

Security concerns:

- Information leakage through the memory hierarchy
- Information leakage through the front-end (branch prediction)
- Hardware-based architectures for isolation (e.g., ARM TrustZone and Intel SGX)
- Power-analysis side-channel attacks

Keywords

Processors, Instruction Level Parallelism, Systems-on-Chip, Embedded Systems, High-Level Synthesis, Hardware Security.

Learning Prerequisites

Required courses

CS-208 Architecture des ordinateurs or Computer Architecture I

Recommended courses

CS-209 Architecture des systèmes-on-chip or Computer Architecture II

Important concepts to start the course

Undergraduate knowledge of digital circuit design and of computer architecture

Learning Outcomes

By the end of the course, the student must be able to:

- Design strategies to exploit instruction level parallelism in processors.
- Contrast static and dynamic techniques for instruction level parallelism.
- Design effective processor (micro-)architectures for which efficient compilers can be written.
- Develop hardware accelerators competitive to best commercial processors
- Defend against security threats based on microarchitectural processor features

Teaching methods

Courses, labs, and compulsory homeworks.

Assessment methods

Labs, homeworks, and final exam.

Supervision

Office hours No
Assistants Yes
Forum Yes

Resources

Virtual desktop infrastructure (VDI)

No

Bibliography

• John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufman, 6th edition, 2017.

Ressources en bibliothèque

• Computer Architecture / Hennessy

Moodle Link

• https://moodle.epfl.ch/course/view.php?id=15017

Prerequisite for

• CS-471 Advanced Multiprocessor Architecture