

MICRO-512 Image processing II

Liebling Michael, Sage Daniel, Unser Michael, Van De Ville Dimitri

Sem.	Type
E	Opt.
MA4	Opt.
Е	Opt.
MA2, MA4	Opt.
Е	Opt.
Е	Opt.
	Opt.
MA2, MA4	Opt.
MA2, MA4	Opt.
MA4	Opt.
	E MA4 E MA2, MA4 MA2, MA4 MA2, MA4 MA2, MA4 MA2, MA4 MA2, MA4 E E MA2, MA4 MA2, MA4

Language of teaching	English
Credits Session Semester Exam Workload Weeks	3 Summer Spring Written 90h 14
Hours Courses Number of positions	3 weekly 3 weekly

Summary

Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in JAVA; application to real-world examples in industrial vision and biomedical imaging.

Content

- Review of fundamental notions. Multi-dimensional Fourier transform. Convolution. z-transform. Digital filters.
- Continuous representation of discrete data. Splines. Interpolation. Geometric transformations. Multi-scale decomposition (pyramids and wavelets).
- Image transforms. Karhunen-Loève transform (KLT). Discrete cosine transform (DCT). JPEG coding. Image pyramids. Wavelet decomposition.
- Reconstruction from projections. X-ray scanners. Radon transform. Central slice theorem. Filtered backprojection. Iterative methods.
- Deconvolution. Inverse and Wiener filtering. Matrix formulations. Iterative techniques (ART).
- Statistical pattern classification. Decision making. Bayesian classification. Parameter estimation. Supervised learning. Clustering.
- Image analysis. Pixel classification. Contour extraction and representation. Shape. Texture. Snakes and active contours.

Learning Prerequisites

Required courses

Image Processing I

Recommended courses

Signals and Systems I & II, linear algebra, analysis

Important concepts to start the course

Image processing II Page 1 / 2

Basic image processing and related analytical tools (Fourier transform, z-tranform, etc.)

Learning Outcomes

By the end of the course, the student must be able to:

- Construct interpolation models and continuous-discrete representations
- Analyze image transforms
- Design image-reconstruction algorithms
- Formalize multiresolution representations using wavelets
- Design deconvolution algorithms
- Perform image analysis and feature extraction
- Design image-processing software (plugins)
- Synthesize steerable filters

Transversal skills

- Plan and carry out activities in a way which makes optimal use of available time and other resources.
- · Manage priorities.
- Access and evaluate appropriate sources of information.
- Use both general and domain specific IT resources and tools

Image processing II Page 2 / 2