

PHYS-200	Physique III				
	Brune Harald				
Cursus		Sem.	Type	Langue	français
Physique		BA3	Obl.	d'enseignement	ITATIÇAIS
				Crédits	6
				Session	Hiver
				Semestre	Automne
				Examen	Ecrit
				Charge	180h
				Semaines	14
				Heures	6 hebdo
				Cours	4 hebdo
				Exercices	2 hebdo
				Nombre de places	

Résumé

Propriétés élastiques des solides et des fluides, Physique des fluides, Relativité restreinte, Electromagnétisme

Contenu

Propriétés élastiques des solides et des fluides

Comportement élastique; comportement visqueux; analyse des contraintes, efforts internes, tenseur des contraintes; tenseur des déformations; énergie de déformation élastique; loi de Hooke généralisée.

Physique des fluides

Cinématique des fluides, équation de Navier-Stokes, dynamique des fluides parfaits, dynamique des fluides visqueux incompressibles, tourbillons, portance, stabilité d'un écoulement, nombre de Reynolds.

Relativité restreinte

Expérience de Michelson, postulats d'Einstein, intervalle dans l'éspace-temps, tranformation de Lorentz, quadrivecteurs, espace-temps de Minkowski, transformation de la vitesse, contraction de la longueur et dilatation de la durée, dynamique de la particule relativiste.

Electromagnétisme

Electrostatique, champ et potentiel électriques; courants électriques stationnaires; magnétostatique; champs électrique et magnétique dans la matière, polarisation et aimantation, champ électromagnétique dépendant du temps, loi de Faraday; équations de Maxwell; énergie électromagnétique, vecteur de Poynting, dipôle de Hertz.

Compétences requises

Cours prérequis obligatoires

Physique I et II

Acquis de formation

A la fin de ce cours l'étudiant doit être capable de:

- Concevoir un modèle d'un phénomène physique
- Formuler des hypothèses simplificatrices d'un modèle d'un phénomène physique
- Résoudre les problèmes et applications de la matière traitée
- Critiquer les résultats d'un modèle d'un phénomène physique
- Appliquer les modèles physiques développés à la résolution de problèmes et d'applications

Méthode d'enseignement

Ex cathedra et exercices en classe

Méthode d'évaluation

Physique III Page 1 / 2

Examen final écrit

Encadrement

Office hours Non
Assistants Oui
Forum électronique Non
Autres Non

Ressources

Bibliographie

John Botsis & Michel Deville: Mécanique des Milieux Continus: Une Introduction

Kip S. Thorne & Roger D. Blandford: Modern Classical Physics

François A. Reuse: Electrodynamique

Richard Phillips Feyman: The Feynman Lectures on Physics

Paul A. Tipler & Ralph A. Llewellyn: Modern Physics

Références suggérées par la bibliothèque

- Richard Phillips Feyman: The Feynman Lectures on Physics
- François A. Reuse: Electrodynamique
- Paul A. Tipler & Ralph A. Llewellyn: Modern Physics
- John Botsis & Michel Deville: Mécanique des Milieux Continus: Une Introduction
- Kip S. Thorne & Roger D. Blandford: Modern Classical Physics

Préparation pour

Physique IV

Physique III Page 2 / 2