PHYS-309 Solid state physics I

Rønnow F	lenrik M.			
Cursus	Sem.	Туре	l anguage of	English
Physics	BA5	Obl.	Language of teaching Credits Session Semester Exam Workload Weeks Hours Courses Exercises Number of positions	English 3 Winter Fall Written 90h 14 3 weekly 2 weekly 1 weekly

Summary

This lecture gives an introduction to Solid State Physics, namely to their crystal and electronic structure, their magnetic properties, as well as to their thermal and electric conductance. The level is that of the book by Ashcroft & Mermin. The lecture is for Physics Students in their 3rd year

Content

The Drude model of metals: DC electrical conductivity, Hall effect, AC electrical conductivity, thermal conductivity.

The Fermi free electron gas: ground-state and thermal properties of the free electron gas, Pauli paramagnetism, Sommerfelf theory of conduction in metals.

Electrons in a periodic potential: the emergence of electronic bands, Bloch's theorem, distinction between metals and insulators, strong coupling approximation.

Dynamics of band-electrons: conductivity, effects of magnetic fields

The lecture is accompanied by an introduction to crystallography in real and reciprocal space.

Learning Outcomes

By the end of the course, the student must be able to:

- Sketch the lattice in real and reciprocal space
- Argue about the number of k-points in the first Brillouin zone
- Compute the electrical conductivity
- Compute the specific heat of electrons
- Explain Bloch's theorem
- Explain Fermi energy and fermi sea

Transversal skills

- Use a work methodology appropriate to the task.
- Communicate effectively with professionals from other disciplines.

Teaching methods

Ex cathedra and exercises in class

Assessment methods

Take home exam

Resources Bibliography Polycopies in French on moodle Ascroft and Mermin: Solid State Physics

Ressources en bibliothèque

Ascroft and Mermin: Solid State Physics

Prerequisite for Solid State Physics II, III and IV