Space technologies minor

ENV-542 Advanced satellite positioning

Cursus	Sem.	Type
Environmental Sciences and Engineering	MA2, MA4	Opt.
Microtechnics	MA2, MA4	Opt.
Robotics, Control and Intelligent Systems		Opt.
Robotics	MA2, MA4	Opt.

Botteron Cvril, Skaloud Jan

Language of	English	
teaching		
Credits	4	
Withdrawal	Unauthorized	
Session	Summer	
Semester	Spring	
Exam	Written	
Workload	120h	
Weeks	14	
Hours	4 weekly	
Courses	2 weekly	
Exercises	1 weekly	
TP	1 weekly	
Number of		
positions		
It is not allowed to withdraw from this subject after the registration deadline.		

Summary

All fundamental principles behind modern satellite positioning to acquire, track and evaluate direct and indirect satellite signals and process them in relation to example applications: Earth monitoring (landslides,...), high precision positioning (automated driving, robots,...) and time transfer.

Ε

Opt.

Content

Concept of satellite positioning

- basic principals & reference frames
- orbit computation & simple positioning

Signal modulation and structure

- RF propagation in space
- signal structure including new Galileo modulations

Receiver technology

- signal preprocessing
- signal acquisition & tracking

Error models and differencing concepts for special and high precision applications

- code and carrier phase measurements
- linear combination of observations

Algorithms for reliable positioning

- code and carrier-phase smoothed-code
- carrier-phase cycle ambiguity determination

Algorithms for environmental sensing

- water vapor estimation
- total electron content estimation
- GNSS reflectometry

Keywords

GNSS, GPS, GLONASS, Galileo, satellite, positioning, signal modulation, detection, estimation, signal processing, ionosphere, troposphere, automated vehicles, space, time-transfer, Earth sensing, drones.

Learning Prerequisites

Recommended courses

Fundamentals of satellite positioning, signals and systems, or signal processing, estimation methods

Important concepts to start the course

Linear algebra, basic signal processing, statistics, programmation in Matlab

Learning Outcomes

By the end of the course, the student must be able to:

- · Implement signal acquisition and tracking
- Develop estimation procedure for precise positioning
- Interpret and analyse error sources as signal of environment
- Apply orbit calculation and algorithms for absolute positioning
- Synthesize a particular problem in GNSS for other students
- Solve carrier-phase ambiguities for cm-level positioning and ionosphere monitoring
- Choose an appropriate method and signals according to application

Transversal skills

- Make an oral presentation.
- Summarize an article or a technical report.
- Use both general and domain specific IT resources and tools

Teaching methods

Ex cathedra, exercises (part in computer room), demonstrations

Expected student activities

Active participation in the course and lab assignments, programming of algoritms and self-control (debugging), study of scientific papers.

Assessment methods

Presentation: 14 % (during semester) Labs: 36 % (during semester)

Written exam: 50 % (during exam period)

Supervision

Office hours No
Assistants Yes
Forum No

Resources

Bibliography

Recommended literature on Moodle.

Notes/Handbook

Slides, book chapter and scientific papers distributed via Moodle.

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=13837

Prerequisite for

Sensor orientation