

Number of positions

MICRO-515 Evolutionary robotics

Cursus	Sem.	Туре	l anguage of	English
Microtechnics	MA2, MA4	Opt.	teaching	Linglish
Robotics, Control and Intelligent Systems		Opt.	Credits	3 Summer
Robotics	MA2, MA4	Opt.	Semester	Spring
			Exam	Written
			Workload	90h
			Weeks	14
			Hours	2 weekly
			Courses	2 weekly

Remark

pas donné en 2020-21

Summary

NOT OFFERED IN 2020-2021 The course describes theories, methods, and technologies for designing software and hardware systems that are inspired upon natural evolution. It also shows how artificial systems can help to understand biological systems.

Content

- Natural and Artificial Evolution
- Evolutionary Computation and Applications
- Evolution of Neural Systems
- Advanced Evolutionary Algorithms
- Evolutionary Robotics
- Developmental Systems
- Evolution of Collective Systems

Learning Prerequisites

Important concepts to start the course Programming skills (Phython, Java, C++)

Learning Outcomes

By the end of the course, the student must be able to:

- Apply new tools for software and hardware engineering
- Translate acquired theoretical knowledge in practical implementations during laboratory sessions

Teaching methods

Lectures, software exercises, and exercises and project involving 3D printing, assembly, programming, and characterization of modular robot with neural controller.

Expected student activities

Attending lectures, asking critical questions, taking all exercises and completing assignments for the following week,

forming groups and performing collaboratively project woth physical robots, writing and presenting project results

Assessment methods

Mini-project report/presentation + written exam

Supervision

Office hours	No
Assistants	Yes
Forum	Yes

Resources

Bibliography Floreano, D. & Mattiussi, C. (2008) Bioinspired Artificial Intelligence. MIT Press (selected chapters)

Ressources en bibliothèque

Bioinspired Artificial Intelligence / Floreano