MICRO-560 BioMEMS

Renaud Philippe

Ronada Emplo		
Sursus Se	em.	Туре
Bioengineering MA	43	Opt.
Biomedical technologies minor H		Opt.
Electrical and Electronical Engineering MA	A1, MA3	Opt.
ife Sciences Engineering MA	A1, MA3	Opt.
Aicrotechnics MA	A1, MA3	Opt.
Sciences du vivant MA	43	Opt.

positions It is not allowed to withdraw from this subject after the registration deadline.

2 weekly

50

Courses

Number of

Summary

This course covers the main applications of micro devices for life science and biomedical applications. The course is organized by application topic. It is also covering the basic physical, biological, chemical, technological concepts, which are presented as transversal introductory section

Content

Application topics (mini-chapters):

- DNA separation, extraction, amplification
- DNA arrays
- PCR, sequencing
- protein separation, arrays
- immunuassays, lateral flow assays, paper devices, multiplex asays
- Electrochemical sensors
- Impedance biosensors, cell based impedance
- mechanical biosensor
- microelectrode array, neurochips
- dielectrophoresis, electroporation, microflow cytometry, cell sorting
- drug delivery devices
- cell chips, cell arrays

Basic concepts (transversal mini-chapters):

- key numbers
- technologies
- diffusion and dilution limit
- surface tension
- surface chemistries, reaction kinetics
- microfluidics
- electrode model, electrochemistry basics
- cell models
- electrokinetics

Keywords

microtechnology biosensor biomedical

Learning Prerequisites

Recommended courses Capteurs (or equivalent) Technologies of microstructures

Important concepts to start the course basic knowledge in physics, chemistry

Learning Outcomes

By the end of the course, the student must be able to:

- Illustrate applications of BioMEMS examples
- Design devices for specifics applications
- Explain basic principles involved in BioMEMS

Teaching methods

Course organized in mini-chapters, presented by application topic. The basic concepts are presented in betwen application topics Ecach mini-chapter or basic concept is presented in about 20 minutes, followed by 10 minutes discussion/question session

Expected student activities

read the basic concepts mini chapter before the class when it will be presented reply to some quizz along the course

Assessment methods

oral exam:

A wtritten question is given to the student, he has 15 minutes for preparation and wtring on the question page. Then, the oral examination takes 15 minutes

Supervision

Office hours	Yes
Assistants	No
Forum	No

Resources

Bibliography

- Introduction to BioMEMS, Albert Folch, CRC presss
- Microfluidics for Biotechniology, J. Berthier & P. Sliberzan (pdf extracts will be available on the Moodle for reading)

• Handbook of Biosensors and Biochips, R. Marks et al., Wyley (pdf extracts will be available on the Moodle for reading)

Ressources en bibliothèque

Introduction to BioMEMS / Folch

• Microfluidics for Biotechnology / Berthier

Notes/Handbook

Lecture notes

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=305