

MICRO-420 Selected topics in advanced optics

Martin Olivier		
Cursus	Sem.	Type
Electrical and Electronical Engineering	MA1, MA3	Opt.
Microtechnics	MA1, MA3	Obl.
Photonics minor	Н	Opt.
Photonics		Opt.

Language of teaching	English
Credits	3
Session	Winter
Semester	Fall
Exam	Oral
Workload	90h
Weeks	14
Hours	3 weekly
Courses	3 weekly
Number of positions	

Summary

This course explores different facets of modern optics and photonics.

Content

- · Summary of fundamental optics (ray optics, Maxwell's equations, wave optics and polarization optics)
- Material properties and optical constants
- Light scattering
- Optics of metals and plasmoncis
- Gratings, stratified media and photonic crystals
- Acousto-optics
- Electro-optics
- Metamaterials.

Keywords

Maxwell's equations, optics, photonics, polarization, material constant, dispersion, light scattering, Mie scattering, plasmonics, gratings, photonic crystals, acousto-optics, electro-optics, metamaterials, nonlinear optics

Learning Prerequisites

Recommended courses

General knowledge of fundamental optics, e.g. courses Ingénierie Optique I & II

Learning Outcomes

By the end of the course, the student must be able to:

- Analyze an optics problem
- Develop a model for this problem
- Synthesize the properties of different fundamental optical phenomena
- Elaborate a deep understanding of the underlying phenomena
- Model an optics problem using Matlab
- Explore an optical parameter range using Matlab

Transversal skills

- Assess one's own level of skill acquisition, and plan their on-going learning goals.
- Set objectives and design an action plan to reach those objectives.
- Use both general and domain specific IT resources and tools

Teaching methods

Ex-cathedra and exercises on Matlab.

Expected student activities

Read the course material beforehand, participate actively during the lecture and during the exercises with Matlab. Go through the solution of the exercises and seek feedback when necessary.

Assessment methods

Oral exam.

Resources

Ressources en bibliothèque

• Wave optics : basic concepts and contemporary trends / Gupta

Notes/Handbook

Provided on Moodle and during the lecture.