BIO-463 Genomics and bioinformatics

Rougemont Jacques

о I				
Cursus	Sem.	Туре	Language of	English
Bioengineering	MA4	Opt.	teaching	Linglion
Life Sciences Engineering	MA2, MA4	Opt.	Credits Session Semester Exam	4 Summer Spring During the semester
Sciences du vivant	MA4	Opt.		
Systems Engineering minor	E	Opt.		
			Workload	120h

Summary

This course reviews the different techniques of DNA sequence analysis and the associated bioinformatics tools in the context of applications to current research in molecular biology.

Content

- Genome sequencing and assembly
- Genome annotation, gene prediction
- Hidden Markov Models
- Comparative genomics
- Phylogenetic trees
- Models of molecular evolution
- Transcription
- Gene expression profiling
- Gene regulation
- Chromosome conformation

Learning Prerequisites

Recommended courses

Molecular biology, genetics, linear algebra, ordinary differential equations, basic statistics, computer programming

Important concepts to start the course DNA and RNA, replication, transcription and translation.

Learning Outcomes

By the end of the course, the student must be able to:

Transversal skills

- Access and evaluate appropriate sources of information.
- Summarize an article or a technical report.

14

4 weekly 2 weekly

2 weekly

Weeks

Hours

Courses

Exercises Number of positions

- Communicate effectively with professionals from other disciplines.
- Use both general and domain specific IT resources and tools

Teaching methods

2 hours lecture (theoretical concepts) followed by 2 hours practical exercises (review the theory and practice with bioinformatics tools and data)

Lecture notes, slides and exercises provided on Moodle.

Assessment methods

The evaluation is based on a written test covering at week 7 and a personal project over week 7 to week 14. Each counts for 50% of the grade.

Resources

Bibliography

- A primer of genome science / Greg Gibson, Spencer V. Muse
- Bioinformatics: sequence and genome analysis / David W. Mount
- Bioinformatics and functional genomics / Jonathan Pevsner
- Biological sequence analysis: probabilistic models of proteins and nucleic acids / Richard Durbin

Moodle Link

• http://moodle.epfl.ch/course/view.php?id=11181