

EE-543 Advanced wireless receivers

Burg Andreas Peter

Cursus	Sem.	Type
Data and Internet of Things minor	Е	Opt.
Electrical and Electronical Engineering	MA2, MA4	Opt.

Language of English teaching Credits Session Summer Semester Spring Exam During the semester Workload 90h Weeks 14 Hours 3 weekly 2 weekly Courses 1 weekly Exercises Number of positions

Summary

Students extend their knowledge on wireless communication systems to spread-spectrum communication and to multi-antenna systems. They also learn about the basic information theoretic concepts, about channel coding, and bit-interleaved coded modulation.

Content

Spread-Spectrum-Modulation:

Basic concept, direct sequence spread spectrum, CDMA

Channel coding:

Principles and basic idea of channel coding, block codes, convolutional codes, Viterbi decoder

Information theory:

Basic concepts, channel capacity, mutual information

Multi-antennas systems / MIMO:

Basic idea of spatial multiplexing, MIMO capacity, MIMO receivers (maximum-likelihood, linear, SIC, VBLAST)

Final PROJECT:

Implement and simulate the IS-95 cellular downlink and extend the standard to MIMO

Learning Prerequisites

Required courses

EE-442 Wirelss Receivers: algorithms and architectures (or an equivalent course on fundamentals of wirelss communications)

Learning Outcomes

By the end of the course, the student must be able to:

- Implement an advanced (coded) wireles standard from a specification in MATLAB
- Realize complex receiver algorithms
- · Analyze wireless system performance
- Explain performance limits of wireless systems

Teaching methods

Ex-cathedra lectures, lab exercises, and final MATLAB project

Assessment methods

Advanced wireless receivers Page 1 / 2

Final Project

Advanced wireless receivers Page 2 / 2