PHYS-424	Plasma physics III				
	Reimerdes Holger				
Cursus		Sem.	Туре	Language of	English
Energy minor		Е	Opt.	teaching	English
Ingphys		MA2, MA4	Opt.	Credits	4
Physicien		MA2, MA4	Opt.	Session Semester	Summer Spring
				Exam	Oral
				Workload	120h
				Weeks	14
				Hours	4 weekly
				Courses	2 weekly
				Exercises	2 weekly
				Number of positions	·

Summary

This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of controlled fusion and magnetic confinement, astrophysical and space plasmas, and societal and industrial applications.

Content

A. Fusion energy

- Basics (the need for fusion, advantages, nuclear reactions, the Lawson criterion)
- Inertial confinement: physics issues and the reactor concept
- Magnetic Confinement: MHD reminder, tokamak and other options (stellarator)
- Magnetic Confinement: tokamak equilibrium, instabilities and operational limits
- Magnetic Confinement: Transport theoretical basis and phenomenology
- Magnetic Confinement: Heating, burning plasmas, ITER and route to a power plant

B. Industrial applications

- The basics of plasma discharges for applications
- Examples of plasma applications in industry and medicine

C. Plasmas in nature

- Astrophysics and space plasmas
- · Solar physics radiation transport and dynamo
- Joint problems of space and fusion plasmas Magnetic reconnection and particle acceleration

D. Plasma diagnostics

• Categories of plasma diagnostics

EPFL

• Measurements of plasma properties, magnetic properties and processes at the plasma-material interface

Learning Prerequisites Recommended courses Electrodynamics, Plasma physics I and II

Learning Outcomes

By the end of the course, the student must be able to:

- Design the main elements of a magnetic confinement system
- Describe various applications of plasma physics
- Identify the main components and physics issues of magnetic and inertial confinement fusion
- Describe the main scientific issues in astrophysical plasmas
- Describe the main advantages of plasmas in industrial applications

Teaching methods Ex cathedra and exercises in class

Assessment methods oral exam

Resources

Websites

https://crppwww.epfl.ch/physplas3/